

深度学习平台

小组成员: 张俊辉、刘陆、刘欣远、穆育松、刘思辰、依西降参

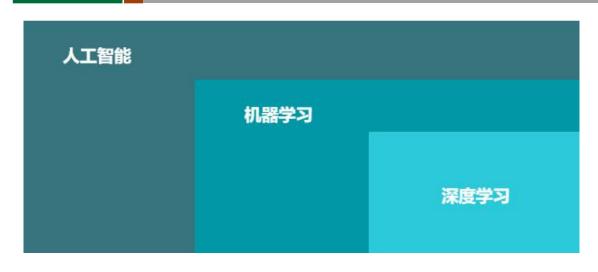
时 间: 2021/9/18

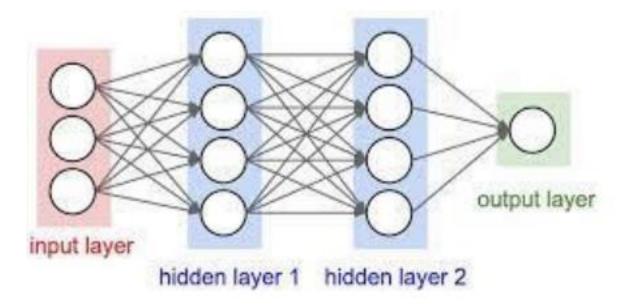
1 概述

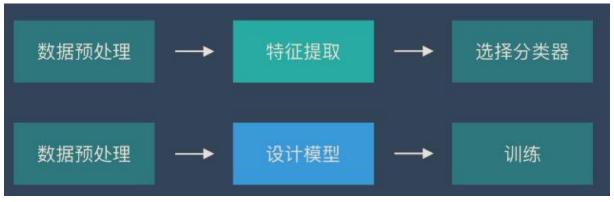
2 深度学习平台简介

? 深度学习平台实践

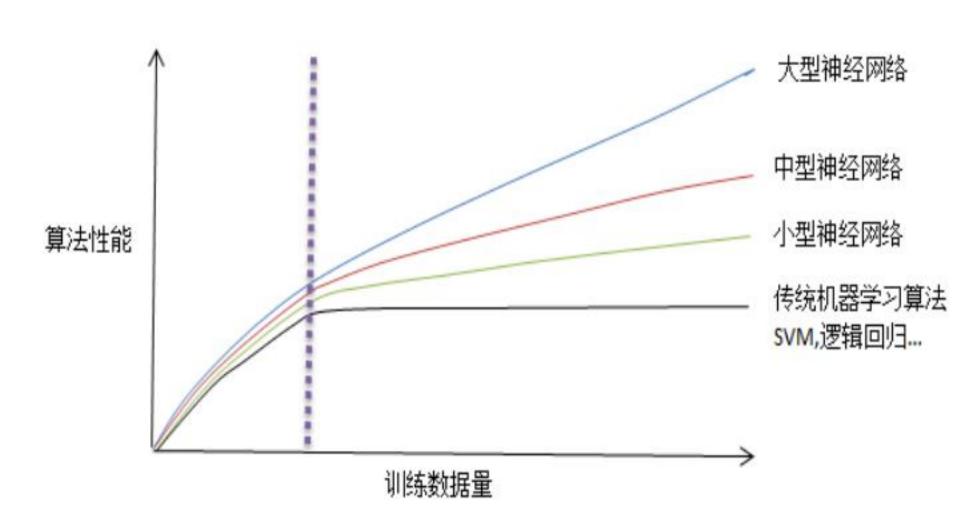
4 总结


既述




1

深度学习是什么



- 深度学习(Deep Learning):
 - ■一种实现机器学习的技术,是机器学习最重要的分支
 - ■来源于人工神经网络的研究,它的模型结构是一种含多Hidden layer的神经网络
 - 通过组合底层特征形成更加抽象 的高层特征

数据、算法、计算力

优点:

- 1.学习能力强
- 2. 覆盖范围广、适应性好
- 3.数据驱动、上限高
- 4.可移植性好

缺点:

- 1.计算量大、便携性差
- 2.硬件需求高
- 3.模型设计复杂
- 4.没有"人性"、容易存在偏见

深度学习平台

平台优势

中国深度学习开源框架用户份额,2021H1

利用硬件资源、简化计算图搭建、简化偏导操作、高效运行、降低入门门槛 MindSpore, 2.4% 其它,9.9% 发展状况 2010 Caffe Tensorflow, 29.2% theano mxne neo moa 飞桨Paddle, 19.1% Caffe2/Pytorch, [™] 28.2%

深度学习平台简介

- 1 Tensorflow
- 2 PyTorch
- 3 PaddlePaddle
- 4 其它平台

1.TensorFlow

TensorFlow简介

TensorFlow是谷歌开源的一款深度学习框架,首次发布于2015年,TensorFlow2发布于2019年。

TensorFlow是一个采用**数据流图** 进行数值计算的开源软件库,常被应用于各种感知、语言理解、语音识别、图像识别等多项机器深度学习领域。

TensorFlow发展历史

₹2015年

谷歌大脑团队发布 了TensorFlow并 对代码开源

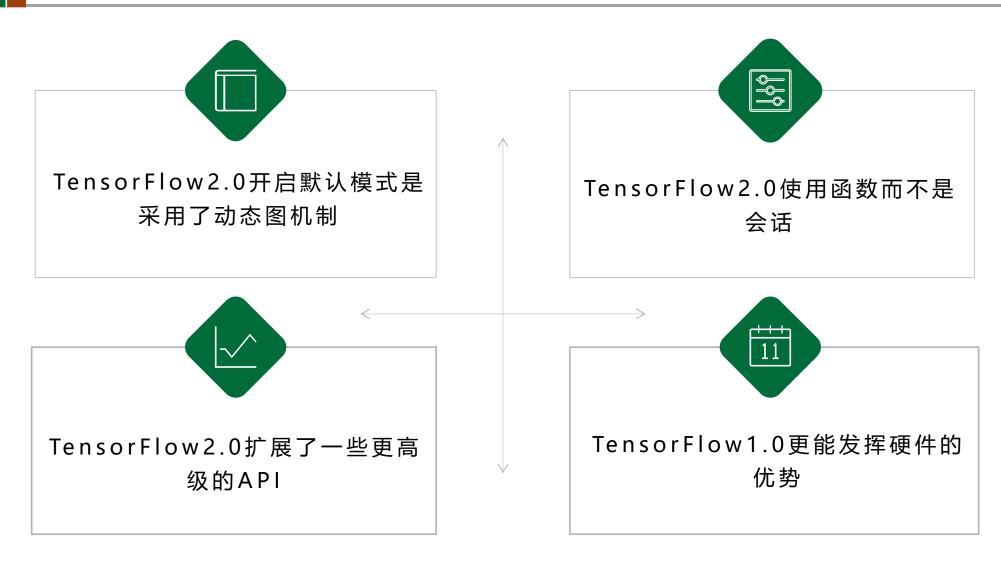
▶2016年

支持分布式计算; 同时增加了对 Windows环境的 支持

₹2017年

TensorFlow的1.0 版本正式发布,更 注重API的稳定性

2018年


TensorFlow 生态系统的核 心组件发布, 更好地建成了 生态环境

₹2019年

TensorFlow的2.0 版本发布,简化了 模型开发流程,并 提供了更强大的跨 平台能力

TensorFlow2.0与1.0对比

TensorFlow的特点

可移植性

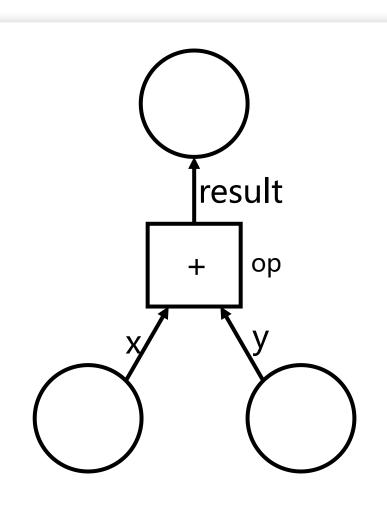
TensorFlow可以在CPU和GPU上运 行,可以在台式机,服务器,移动设 备上运行

多语言支持

支持多种流行语言,如python, java, c++等

可视化训练过程

TensorFlow使用TensorBoard对训 练过程,模型,数据图等进行可视化

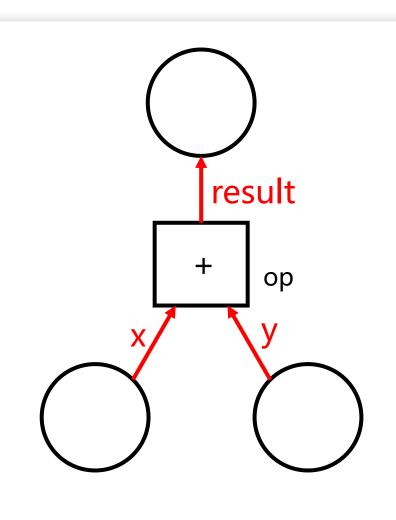


高度的灵活性

只要能够将计算表示成为一个数据流 图,那么就可以使用TensorFlow

TensorFlow基本概念——数据流图

数据流图

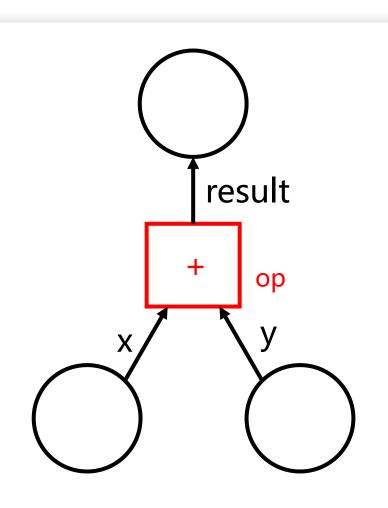

TensorFlow中的每一个计算都 代表着一个**数据流图**。这个图有 两个元素:

一系列的tf.Operation,代表**计算单位**

一系列的tf.Tensor,代表数据单位

TensorFlow基本概念——Tensor(张量)

在TensorFlow的数据流图中,线(Edges)表示在节点间相互联系的多维数据数组,即张量(Tensor)一个张量中主要保存了三个属性:名字(name)、维度(shape)、类型(type)


创建恒定的张量x=[1,3,6], y=[1,1,1]

```
import tensorflow as tf

x = tf.constant([1,3,6])
y = tf.constant([1,1,1])
```

TensorFlow基本概念——operation(操作)

在TensorFlow的数据流图中,节点(Nodes)表示操作,即operation

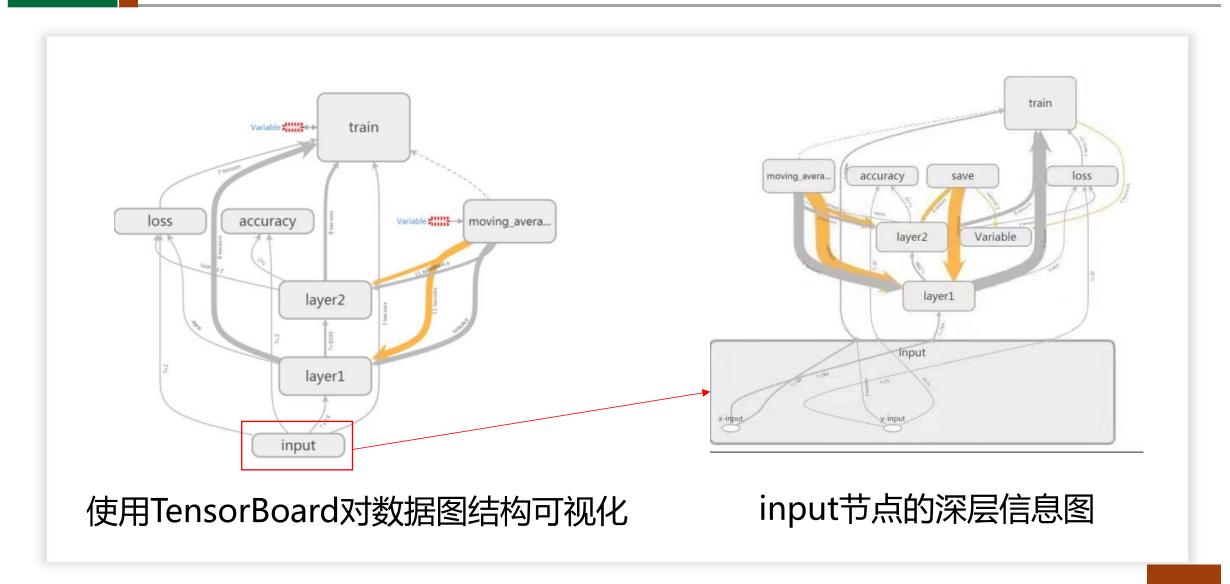
定义操作单元

```
import tensorflow as tf

x = tf.constant([1,3,6])
y = tf.constant([1,1,1])

op = tf.add(x,y)
```

TensorFlow的实用工具——TensorBoard



TensorBoard是TensorFlow内置的一个**可视化工具**,它通过将 TensorFlow程序输出的日志文件的信息可视化,使得TensorFlow程序的 理解、调试和优化更加简单高效。

利用TensorBoard可以更直观的看见整个神经网络的结构,观察模型的结构和训练过程中各个参数的变化。

TensorFlow的实用工具——TensorBoard

TensorFlow的实用工具——TensorFlow Lite

TensorFlow Lite是为了解决TensorFlow在移动平台和嵌入式端过于臃肿而定制开发的轻量级解决方案,允许用户在多种设备上运行。TensorFlow Lite模型具有占用空间小,低延迟的特点。

TensorFlow的实用工具——TensorFlow Lite

以移动端为例

在高性能的电脑上用数据训练出神经网络的参数

用TensorFlow 转化器把训练 好的模型转化 成TensorFlow lite的格式

在手机移动端上,使用TensorFlow lite解析器读取该模型,将模型部署在移动端上并高效的运行它。

TensorFlow的应用

英语流利说使用TensorFlow 训练 AI 老师 京东基于TensorFlow 做 大规模推荐

Airbnb 用 TensorFlow 做 图片分类。系统自动把房东上 传的图片分类成客厅、厨房和 卧室

 可口可乐用 TensorFlow 来解决抽奖码扫码输入的问题

基于 TensorFlow 的深度神经网络解决大规模计算问题,研究极端天气以及它们对地球的影响

安徽中医药大学的一位老师, 在用 TensorFlow 来识别 中医药材的切片

2.PyTorch

PyTorch从何而来?

Py + Torch

PyTorch是一个基于Torch的 Python**开源机器学习框架**,可加快 从研究原型设计到生产部署的过程。

通常被用于计算机视觉、自然语言处理等多种应用程序。

FROM RESEARCH TO PRODUCTION

An open source machine learning framework that accelerates the path from research prototyping to production deployment.

PyTorch 发展历史

PyTorch的特点

简洁优雅

tensor→autograd →nn.Module

高效快速

保持灵活性的同时 不以速度为代价

易于使用

API设计来源于Torch 最优雅的面向对象设计的框架

社区活跃

作者亲自维护论坛, FAIR的支持确保持续的开发更新

PyTorch基础知识

Tensor

张量是PyTorch里的基本运算单位, 类似于numpy中的ndarray,但Tensor可以使用GPU加速运算。

互相转换

```
# a --> Tensor

a = torch. rand(3, 2)

# Tensor --> numpy

numpy_a = a. numpy()

# numpy --> Tensor

b = torch. from_numpy(numpy_a)
```

PyTorch基础知识

Autograd

Autograd模块实现了深度学习算法中的反向传播求导, 在Tensor上的所有操作, Autograd都能为它们自动计算微分。

操作设置

X = torch.randn(5, 5, requires_grad = True)


通过设置requires_grad = True来对该张量进行自动求导。 计算完成后,调用backward()方法计算梯度,并保存在 grad中。

PyTorch的应用

OpenAI的大规模文本处理网络GPT-3

可以自动续写代码:

RESULT

import cv2

file_name="test.jpg"

#open it with cv2 and detect the edge

img=cv2.imread(file_name) edges=cv2.Canny(img, 100, 200) #get edges from Canny in grayscale image cv2.imshow("edges", edges)

#draw the edges cv2.imshow("img", img) cv2.waitKey(0) cv2.destroyAllWindows()

#save the detected edge image and name as "edge.jpg" cv2.imwrite("edge.jpg", edges)

PyTorch的应用

DeepMind的Alphafold2,使用PyTorch进行蛋白质结构预测。

AlphaFold: a solution to a 50-year-old grand challenge in biology

3.PaddlePaddle

PaddlePaddle

PaddlePaddle(飞桨),是2016年8月百度研发的一款深度学习框架,以"致力于让深度学习技术的创新和应用更简单"为设计目的。

飞桨企业版												
EasyDL 零门槛AI开发平台						BML全功能 AI开发平台						
飞桨开源深度学习平台												
工具组件	AutoDL PA 自动化深度学习 强化		The second secon			The second of th		PGL 神经网络	The state of the s			
	PaddleHub 预训练模型应用工具		PaddleX 全流程开发工具			VisualDL 可视化分析工具			PaddleCloud 云上任务提交工具			
端到端开发套件	ERNIE 语义理解	PaddleClas 图像分类	PaddleDetection 目标检测		dleSeg 除分割	PaddleOCR 文字识别	PLSC 海量类别分		ticCTR 率预估	Parakeet 语音合成	Al Studio	
基础模型库	PaddleNLP		Pac		PaddleRec			PaddleSpeech		学习与实训社区		
核心框架	开发		训练			推理部署						
	动态图静态图	大规模分布	式训练 工业级数据	属处理	PaddleSlim	Paddle Inference	Paddle Serving	Paddle Lite	Paddle.js 安全与加密			

PaddlePaddle发展历史

PaddlePaddle的优点

高度封装

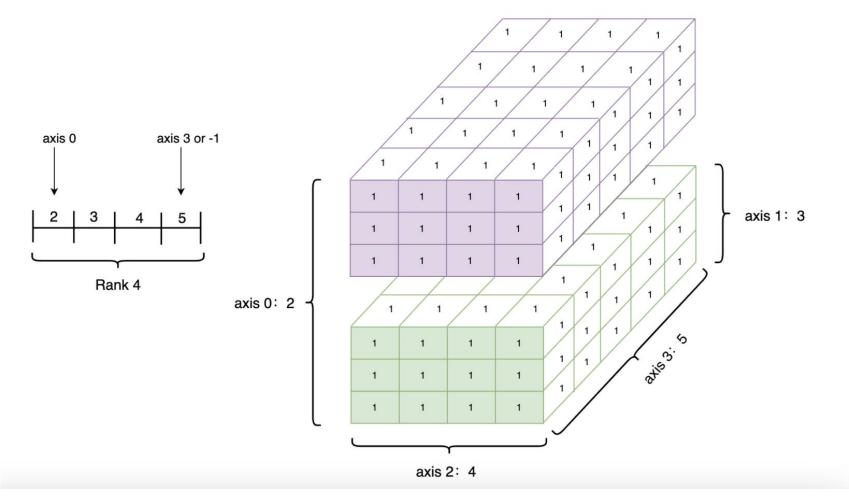
飞桨2.0将自身的API进一步封装, 进一步提升了飞桨的易学易用性

动静转换

飞桨2.0的高层API支持动静转换, 只需要一个函数装饰器 @paddle.jit.to_static

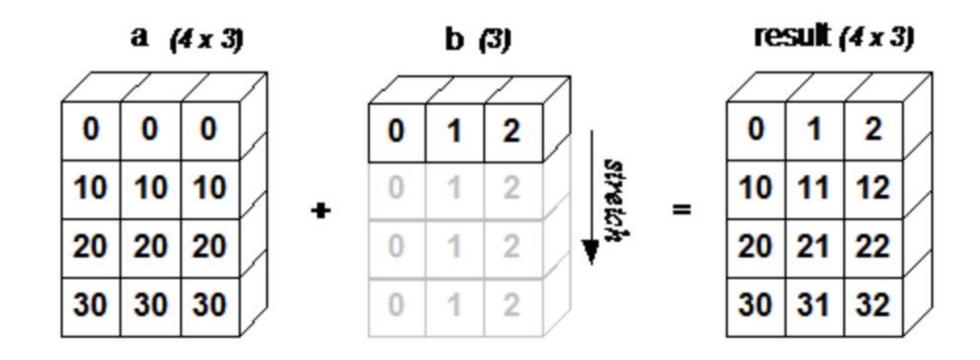
大量官方模型库

于智能视觉、智能文本处理、智能推荐等部分有着官方模型,稍 加修改即可投入使用

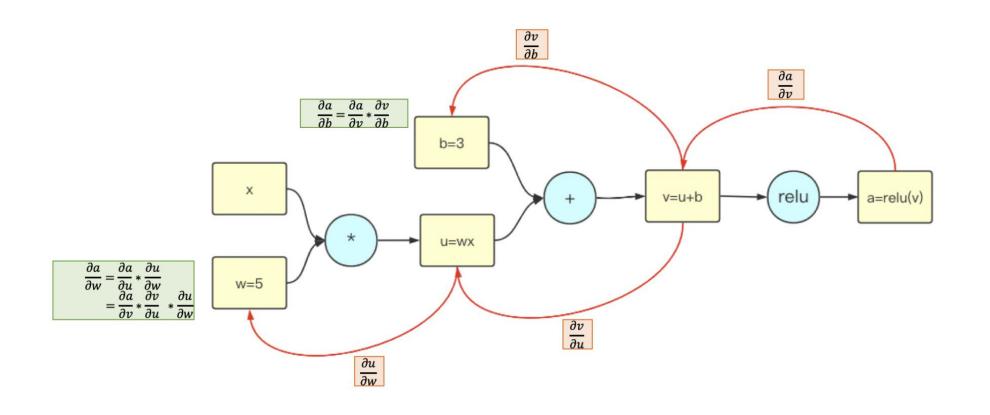

可视化

飞桨可视化分析工具VisualDL, 可帮助用户更清晰直观地理解深 度学习模型训练过程及模型结构

基本概念——Tensor


- shape: 描述tensor的每 个维度上元素的数量
- ndim: tensor的维度数 量
- axis: tensor某个特定的 维度
- size: tensor中全部元素 的个数

基本概念——广播机制


飞桨和其他框架一样,提供的一些API支持广播(broadcasting)机制,允许在一些运算时使用不同形状的张量,遵循Numpy的广播规则

基本概念——自动微分

飞桨的自动微分是通过trace的方式,记录前向OP的执行,并自动创建反向var和添加相应的反向OP,然后来实现反向梯度计算的。

动态图转静态图

动态图

动态图意味着计算图的构建和计算同时发生(define+by+run)。这种机制由于能够实时得到中间结果的值,使得调试更加容易,同时我们将大脑中的想法转化为代码方案也变得更加容易,对于编程实现来说更友好。

静态图

静态图则意味着计算图的构建和实际计算是分开(define+and+run)的。在静态图中,会事先了解和定义好整个运算流,这样之后再次运行的时候就不再需要重新构建计算图了(可理解为编译),因此速度会比动态图更快,从性能上来说更加高效。

动态图转静态图

飞浆支持用户使用动态图编写组网代码, PaddlePaddle会对用户标识的代码进行分析,将其转换为静态图网络结构,兼顾了动态图易用性和静态图部署性能两方面优势。

3.6 经典应用

该应用基于百度飞桨开源的口罩人脸检测及分类模型,可对未佩戴口罩的人员进行识别并提示,识别准确率达96.5%以上。

金漉科技应用飞桨深度 学习开源框架进行训练, 分选效率从 93% 左右提 升到97% 以上,与人工 相差无几 大恒图像使用基于飞桨 开发的语义分割库 PaddleSeg,提升30%的缺陷检出率,安装调试 周期更是由6到8周缩减到2周。

连心医疗使用 PaddleSeg开发套件研 发肺炎筛查系统,在测 试数据集上的病灶检测 精度和召回率分别达到 92%和97%

口罩检测

垃圾分类

缺陷检测

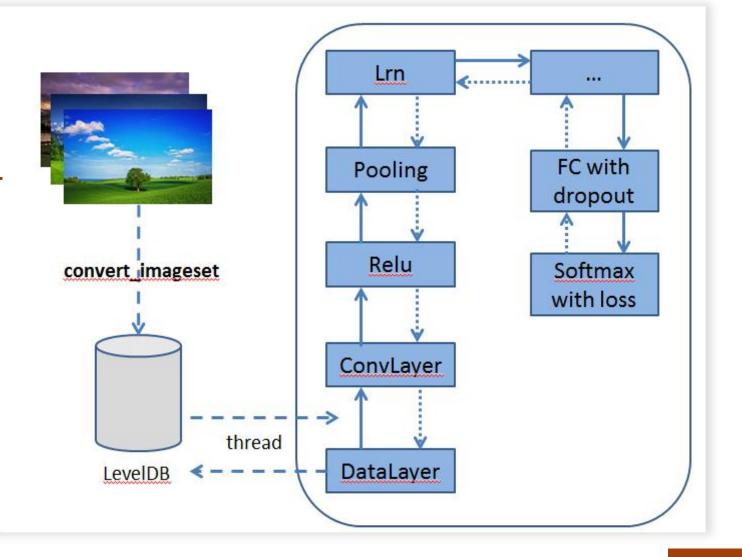
肺炎筛查

4.其它深度学习框架

其他深度学习框架——Caffe

Caffe

2013年贾扬清在加州大学伯克利分校攻读博士期间创建了Caffe项目。Caffe带有C++、Python和MATLAB接口,在图像处理和视频处理领域有广泛使用。


其他深度学习框架——Caffe

Caffe架构

Caffe的核心模块有三个,分别是Blobs、Layers和Nets。

- Blobs用来进行数据存储、数据交互和处理。
- Layers是神经网络的核心, 定义了许多层级结构。
- Nets是一系列Layers的集合, 并且这些层结构通过连接形成一个网图。

其他深度学习框架——Caffe

Caffe的特点

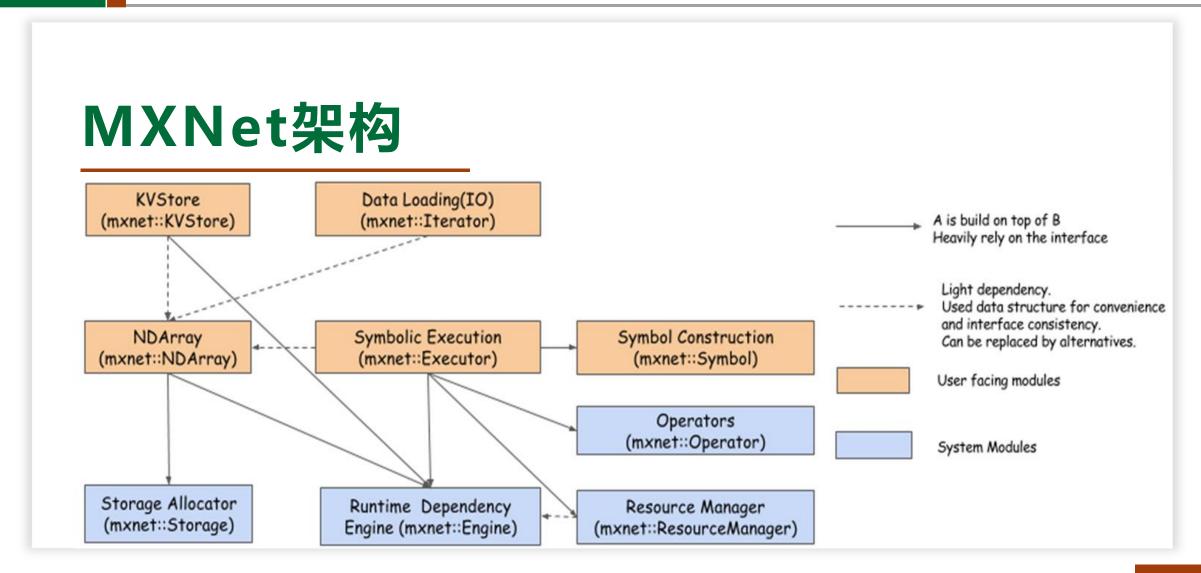
Caffe的优点:

- 速度快, 谷歌数据标准提升了效率
- 相对稳定
- 迁移性较好
- CPU与GPU的无缝切换

Caffe的缺点:

- 各个版本间的兼容性较差
- 不够灵活
- 安装调式比较难

其他深度学习框架——MXNet


MXNet

MXNet在2015年李沐等人初次发布,如今成了亚马逊的官方框架,有着非常好的分布式支持,占用显存低,同时有Python、C++、R、Matlab和JavaScript等接口。

其他深度学习框架——MXNet

其他深度学习框架——MXNet

MXNet的特点

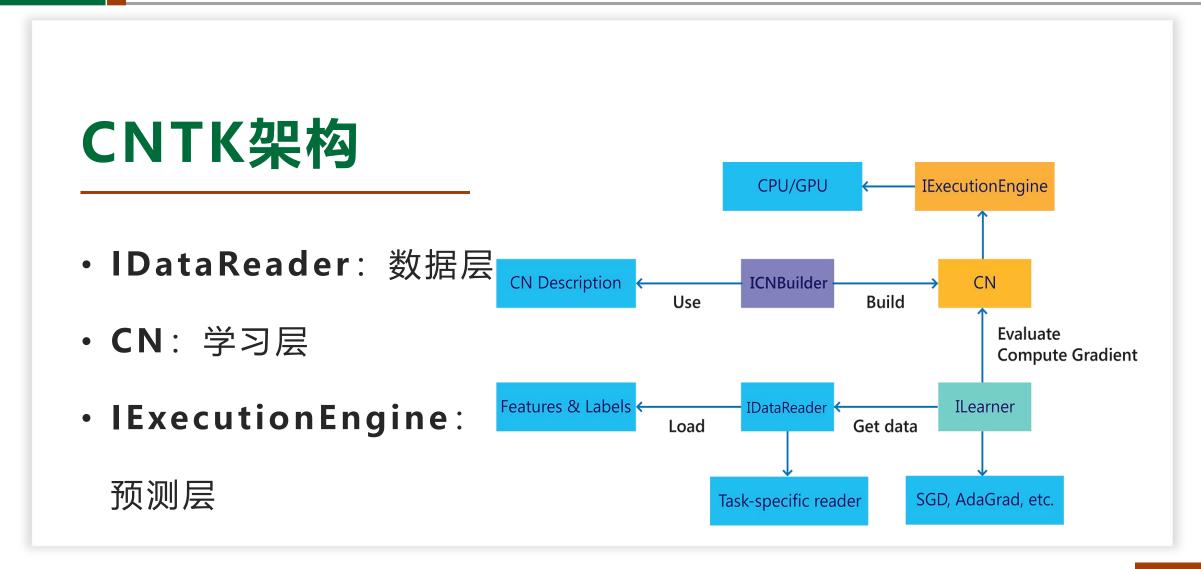
MXNet的优点:

- 相当快的评测结果
- 非常好的灵活性
- 支持多种设备(包括手机)
- · 支持多GPU训练

MXNet的缺点:

- 学习社区小,学习文档较少
- 安装调试较麻烦
- 数据流图比theano差

其他深度学习框架——CNTK


CNTK

CNTK 是一个由微软研究院开发的深度学习算法框架,于2016年在GitHub上开源。它是基于C++语言进行编写,提供Python和C#的接口,相比通用深度学习社区,它在语音识别社区的知名度更高。

其他深度学习框架——CNTK

其他深度学习框架——CNTK

CNTK的特点

CNTK的优点:

- 速度较快
- 很容易上手
- 学习文档较规范
- · 支持多GPU训练

CNTK的缺点:

- 学习社区小
- 不支持移动设备

其他深度学习框架——MindSpore

MindSpore

MindSpore是2019年华为推出的新一代全场景AI计算框架,2020年3月开源。该计算框架可满足终端、边缘计算、云全场景需求,能更好保护数据隐私。

MindSpore

其他深度学习框架——MindSpore

MindSpore

全场景统—API
Unified APIs for all scenarios

自动微分 atic differentiation 自动并行

自动调优

Automatic differentiation | A

Automatic parallelization

Automatic tuning

MindSpore IR 计算图表达

MindSpore intermediate representation (IR) for computation graphs

On-Device执行 On-device execution Pipeline并行 Pipeline parallelism 深度图优化
Deep graph optimization

端-边-云按需协作分布式架构(部署、调度、通信等)

Device-edge-cloud cooperative distributed architecture (for deployment, scheduling, communications, etc.)

处理器: Ascend、GPU、CPU Processors: Ascend, GPU, CPU

- ・ 易用性: 统一编译
 - > 网络和算子统一表达和编译
 - ▶ 自动并行:复杂网络自动并行
 - ▶ 自动微分: E2E的自动微分(网络和算子)
 - > 精准可视调优
- · 性能: 全栈编译加速, 软硬件协同
 - ➤ MindSporeIR实现图和算子统一融合优化
 - ➤ 与Ascend软硬件协同,深度图优化
- · 全场景: 端侧推理和云上训练协同
 - ▶ 轻量化和时延 (IoT设备)
 - ▶ 根据设备信息自适应模型生成
 - ▶ 训练时量化,更好的量化精度,更小的计算开销

其他深度学习框架——MindSpore

MindSpore的优势

简单的开发体验

只需串行表达就能实现并行训练, 降低门槛, 简化开发流程。

灵活的调试模式

开发者通过变更一行代码即可切 换模式,快速在线定位问题。

充分发挥硬件潜能

最佳匹配昇腾处理器,最大程度 地发挥硬件能力。

全场景快速部署

支持云、边和手机的快速部署, 让开发者专注于AI应用的创造

深度学习平台实践

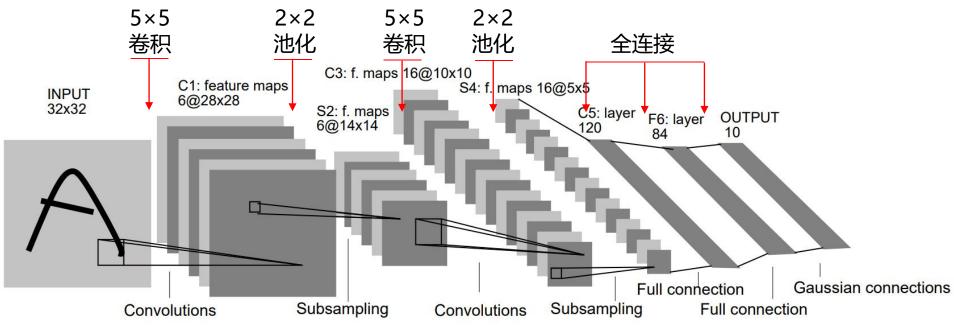
- 1 手写数字识别
- 2 使用三种框架实现
 - PyTorch
 - TensorFlow 2.0
 - Paddle

手写数字识别

数字识别是典型的图像分类问题,应用于邮政编码识别等领域,缩短了业务处理时间。

使用基于 MNIST 数据集的手写数字识别模型。MNIST是深度学习领域标准、易用的成熟数据集,包含 50000 张训练图像和 10000 张测试图像。

⇒輸入数据 手写邮政编码图片 ホ MNIST数据集 念输出数据 对输入数据判断结构


· 任务输入: 手写数字图片, 其中每张图片为 28×28 的像素矩阵

• 任务输出:对应的 0~9 的数字标签

1.2 神经网络结构

LeNet-5 由 Yann LeCun 在1998年提出,用于识别手写数字,是经典的卷积神经网络。 LeNet-5 共有7层,包括 2个卷积层、2个池化层、3个全连接层。

LeNet-5 结构

基本步骤

- 1 数据加载与预处理
- 2 构建模型
- 3 训练模型
- 4 评估模型

PyTorch 实现

- · torch.nn: 神经网络层和一系列损失函数
- · torch.nn.functional: 常见的函数
- · torch.optim: 常见的优化算法
- · torch.utils.data: 加载和迭代数据
- · torchvision: 服务于 PyTorch 的图像处理库

PyTorch 实现 —— 数据加载与预处理


```
from torch.util.data import DataLoader
from torchvision import datasets, transforms
# 预处理
transform = transforms.Compose([
   transforms.ToTensor(),
   transforms.Normalize(mean=(0,), std=(1,)),
    ])
# 训练数据集
train_dataset = datasets.MNIST(root='data/',
                               train=True,
                               transform=transform,
                               download=True)
#测试数据集
test_dataset = datasets.MNIST(root='data/',
                             train=False,
                             transform=transform)
```

PyTorch 实现 —— 构建模型


```
class LeNet(nn.Module):
                                                         def forward(self, x):
   def __init__(self,num_classes=10):
                                                             """ 在 forward 方法指定前向传播流程
       """ 在 init 方法指定模型各层, 并初始化 """
                                                             out=self.conv1(x)
       super().__init__()
                                                             out=F.relu(self.pool1(out))
       # 5*5 卷积
       self.conv1=nn.Conv2d(3,6,kernel_size=5,stride=1)
                                                             out=self.conv2(out)
       # 2*2 池化
                                                             out=F.relu(self.pool2(out))
       self.pool1=nn.MaxPool2d(kernel_size=2,stride=2)
       # 5*5 卷积
                                                             out=out.reshape(-1, 16*5*5)
       self.conv2=nn.Conv2d(6,16,kernel size=5,stride=1)
       # 2*2 池化
                                                             out=self.linear1(out)
       self.pool2=nn.MaxPool2d(kernel_size=2,stride=2)
                                                             out=self.linear2(out)
       # 3个全连接层
       self.linear1=nn.Linear(16*5*5,120)
                                                             out=self.linear3(out)
       self.linear2=nn.Linear(120,84)
                                                             return out
       self.linear3=nn.Linear(84, num_classes)
```

PyTorch 实现 —— 训练模型


```
# 初始化模型, 加载至 GPU
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = LetNet(num_classes).to(device)
# 损失函数, 优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
for epoch in range(num_epochs):
   # mini-batch 方式训练模型
   for images, labels in train_loader:
       # 加载数据
       images = images.to(device)
       labels = labels.to(device)
       # 前向传播, 计算损失
       outputs = model(images)
       loss = criterion(outputs, labels)
       # 反向传播, 更新参数
       optimizer.zero_grad()
       loss.backward()
       optimizer.step()
```

PyTorch 实现 —— 评估模型


```
# 评估模型
             correct, total = 0, 0
             model.eval()
上下文管理器
             with torch.no_grad():
                 for images, labels in test_loader:
                      images = images.to(device)
                     labels = labels.to(device)
                     outputs = model(images)
                     _, predicted = torch.max(outputs.data, 1)
                     total += labels.size(0)
                     correct += (predicted == labels).sum().item()
             print(f'Test Accuracy: {100 * correct / total} %')
```

TensorFlow 实现 —— 数据加载与预处理


```
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import datasets
# 加载 MNIST 数据集
(x, y), (x_test, y_test) = datasets.mnist.load_data() # 返回数组的形状
train_db = tf.data.Dataset.from_tensor_slices((x, y))
train db = train db.shuffle(10000) # 数字为缓冲池的大小
# 设置批训练
train db = train db.batch(512) # batch size  \%  128
#预处理函数
x = tf.cast(x, dtype=tf.float32) / 255. # 标准化
   x = tf.reshape(x, [-1, 28 * 28])
   y = tf.cast(y, dtype=tf.int32) # 转成整型张量
   y = tf.one_hot(y, depth=10)
   return x, y
# 将数据集传入预处理函数,train db支持map映射函数
train_db = train_db.map(preprocess)
# 训练20个epoch
train_db = train_db.repeat(20)
# 以同样的方式处理测试集
test_db = tf.data.Dataset.from_tensor_slices((x_test, y_test))
test db = test db.shuffle(1000).batch(512).map(preprocess)
```

TensorFlow 实现 —— 构建模型

三种构建模型的方式

• Sequential API: 顺序的线性网络(不支持多输入输出和分支结构)

• Functional API: 函数式编程构建模型

• Subclassing API: 面向对象方式构建模型

TensorFlow 实现 —— 构建模型


```
from tensorflow.keras import Sequential
from tensorflow.keras import layers, losses, optimizers
network = Sequential([
        layers.Conv2D(6, kernel_size=3, strides=1),
        layers.MaxPooling2D(pool_size=2, strides=2),
        layers.ReLU(),
        layers.Conv2D(16, kernel_size=3, strides=1),
        layers.MaxPooling2D(pool_size=2, strides=2),
       layers.ReLU(),
        layers.Flatten(),
        layers.Dense(120, activation='relu'),
        layers.Dense(84, activation='relu'),
        layers.Dense(10)
        ])
# 构建网络模型,给定输入 X 的形状,其中 4为随意的 BatchSize
network.build(input_shape=(4, 28, 28, 1))
```

TensorFlow 实现 —— 训练模型


```
# 损失函数、优化器
         criteon = losses.CategoricalCrossentropy(from_logits=True)
         optimizer = optimizers.Adam(lr=1e-4)
         for step, (x, y) in enumerate(train_db):
            x = tf.reshape(x, (-1, 28, 28))
            with tf.GradientTape() as tape:
上下文管理器
                x = tf.expand_dims(x, axis=3) # 插入 1个新维度
                # 前向传播, 计算损失
                out = network(x)
                loss = criteon(y, out)
                # 计算梯度
                grads = tape.gradient(loss, network.trainable_variables)
                # 更新参数
                optimizer.apply_gradients(zip(grads,
         network.trainable_variables))
```

TensorFlow 实现 —— 评估模型


```
total, total_correct = 0., 0
correct, total = 0, 0
for x, y in test_db:
    x = tf.reshape(x, (-1, 28, 28))
    x = tf.expand_dims(x, axis=3)
    # 前向传播, 预测
    out = network(x)
    pred = tf.argmax(out, axis=-1)
    y = tf.cast(y, tf.int64)
    y = tf.argmax(y, axis=-1)
    # 统计预测正确数量
    correct += float(tf.reduce_sum(tf.cast(tf.equal(pred, y), tf.float32)))
    total += x.shape[0]
print(f'test acc: {correct / total}')
```

Paddle 实现 —— 数据加载与预处理


```
import paddle
import paddle.vision.transforms as T
# 数据加载和预处理
# [0-255] -> [0-1]
transform = T.Normalize(mean=[127.5], std=[127.5])
# 训练数据集
train_dataset = paddle.vision.datasets.MNIST(mode='train',
transform=transform)
# 测试数据集
eval_dataset = paddle.vision.datasets.MNIST(mode='test', transform=transform)
```

Paddle 实现 —— 构建模型

两种构建模型的方式:

- Sequential API: 顺序的线性网络(不支持多输入输出和分支结构)
- Subclassing API: 面向对象方式构建模型

Paddle 实现 —— 构建模型


```
net = paddle.nn.Sequential(
   # 卷积层
   ('C1', paddle.nn.Conv2D(in channels=1, out channels=6, kernel size=3, padding=1, stride=1)),
   # 池化层 6x28x28
   ('ReLU1', paddle.nn.ReLU()),
   ('S2', paddle.nn.MaxPool2D(kernel size=2, stride=2, ceil mode=True)),
   # 卷积层 6x14x14
   ('C3', paddle.nn.Conv2D(6, 16, kernel size=5, stride=1, padding=0)),
   # 池化层 16x10x10
    ('ReLU2', paddle.nn.ReLU()),
    ('S4', paddle.nn.MaxPool2D(kernel size=2, stride=2, ceil mode=True)),
   # 全连接层 16x5x5
    ('C5', paddle.nn.Conv2D(16, 120, kernel_size=5, stride=1, padding=0)),
   # 120x1x1
   ('ReLU3', paddle.nn.ReLU()),
    ('ReLU4', paddle.nn.Flatten()),
   # 全连接层 120
   ('F6', paddle.nn.Linear(120, 84)),
   # 全连接层 84
    ('ReLU5', paddle.nn.ReLU()),
   ('OUTPUT', paddle.nn.Linear(84, 10))
```

2.3 Paddle 实现 —— 训练模型

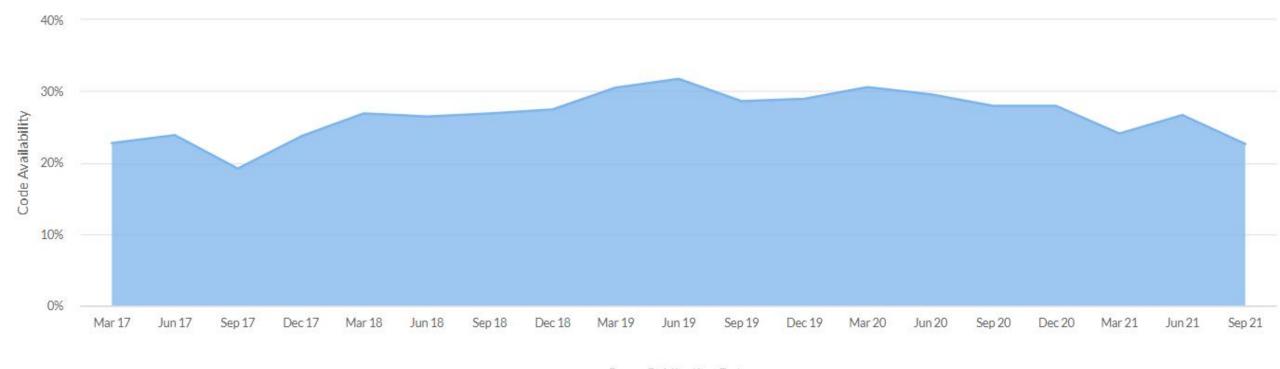

```
# 配置优化器, 损失函数, 评估指标
loss = paddle.nn.CrossEntropyLoss()
optimizer = paddle.optimizer.Adam(learning_rate=0.001,
parameters=net.parameters())
model.prepare(optimizer=optimizer,
             loss=loss,
             metrics=paddle.metric.Accuracy())
# 启动模型全流程训练
model.fit(train_data=train_dataset,
         eval_data=eval_dataset,
         batch_size=64,
         epochs=5,
         verbose=1,
          shuffle=True)
```

Paddle 实现 —— 评估模型


```
result = model.evaluate(eval_dataset, verbose=1)
print(result)
```

输出:

总结


模型对比总结

	Tensorflow2.0	PyTorch	PaddlePaddle	MindSpore
支持语言	Python、Java、 C++	Python、C++、 CUDA	Python	Python
硬件支持	CPU、GPU	CPU、GPU	CPU、GPU、海光 DCU、昆仑XPU、 昇腾NPU	CPU、GPU、 Ascend、NPU
优势	可视化训练过程、 高度灵活性、 <mark>运行</mark> 性能优越	简洁优雅、高效快速、易用性好、 <mark>社区活跃</mark>	可视化、高度封装、 官方模型库、推理 引擎一体化	支持昇腾芯片且性 能好、易用性好、 全场景快速部署

模型生态情况

PyTorch (Solid) vs TensorFlow (Dotted) Raw Counts

Paper Publication Date

Repository Creation Date

总结

使用推荐

- PyTorch: 适用于研究需求,容易快速出算法原型,便于调试
- TensorFlow:适用于大规模场景,工业级应用
- PaddlePaddle: 适用于使用国产芯片等场景(注: 飞浆论文复现挑战赛 总奖金¥1500000)
- MindSpore: 适用于边缘计算等场景,与华为昇腾芯片完美结合,满足云、边、终端全场景需求

参考资料

TensorFlow相关资料: TensorFlow官网、TensorFlow教程

PyTorch相关资料: PyTorch官网、ApacheCN深度学习译文集

PaddlePaddle相关资料: Paddle文档、Paddle教程

Caffe相关资料: Caffe官网、Caffe GitHub地址、Caffe教程

MXNet相关资料: MXNet官网、MXNet GitHub地址、MXNet教程

CNTK相关资料: CNTK官网、CNTK GitHub地址、CNTK教程

MindSpore相关资料: MindSpore官网、MindSpore Gitee、MindSpore 教程

感谢老师的悉心指导

Thanks for Your Attention