
Proceedings of ACL 2018, Student Research Workshop, pages 146–152
Melbourne, Australia, July 15 - 20, 2018. c©2018 Association for Computational Linguistics

146

Automatic Spelling Correction for Resource-Scarce Languages
using Deep Learning

Pravallika Etoori
LTRC, KCIS

IIIT Hyderabad
e.pravallika@

research.iiit.ac.in

Manoj Chinnakotla
Microsoft

Bellevue, USA
manojc@microsoft.com

Radhika Mamidi
LTRC, KCIS

IIIT Hyderabad
radhika.mamidi@

iiit.ac.in

Abstract

Spelling correction is a well-known task
in Natural Language Processing (NLP).
Automatic spelling correction is impor-
tant for many NLP applications like web
search engines, text summarization, sen-
timent analysis etc. Most approaches
use parallel data of noisy and correct
word mappings from different sources as
training data for automatic spelling cor-
rection. Indic languages are resource-
scarce and do not have such parallel data
due to low volume of queries and non-
existence of such prior implementations.
In this paper, we show how to build an
automatic spelling corrector for resource-
scarce languages. We propose a sequence-
to-sequence deep learning model which
trains end-to-end. We perform experi-
ments on synthetic datasets created for In-
dic languages, Hindi and Telugu, by incor-
porating the spelling mistakes committed
at character level. A comparative evalua-
tion shows that our model is competitive
with the existing spell checking and cor-
rection techniques for Indic languages.

1 Introduction

Spelling correction is important for many of the
potential NLP applications such as text summa-
rization, sentiment analysis, machine translation
(Belinkov and Bisk, 2017). Automatic spelling
correction is crucial in search engines as spelling
mistakes are very common in user-generated text.
Many websites have a feature of automatically
giving correct suggestions to the misspelled user
queries in the form of Did you mean? suggestions
or automatic corrections. Providing suggestions
makes it convenient for users to accept a proposed
correction without retyping or correcting the query

manually. This task is approached by collecting
similar intent queries from user logs (Hasan et al.,
2015; Wilbur et al., 2006; Ahmad and Kondrak,
2005). The training data is automatically extracted
from event logs where users re-issue their search
queries with potentially corrected spelling within
the same session. Example query pairs are (house
lone, house loan), (ello world, hello world), (mo-
bilephone, mobile phone). Thus, large amounts of
data is collected and models are trained using tech-
niques like Machine Learning, Statistical Machine
Translation etc.

The task of spelling correction is challenging
for resource-scarce languages. In this paper, we
consider Indic languages, Hindi and Telugu, be-
cause of their resource scarcity. Due to lesser
query share, we do not find the same level of par-
allel alteration data from logs. We also do not have
many language resources such as Parts of Speech
(POS) Taggers, Parsers etc. to linguistically an-
alyze and understand these queries. Due to lack
of relevant data, we create synthetic dataset using
highly probable spelling errors and real world er-
rors in Hindi and Telugu given by language ex-
perts. Similarly, synthetic dataset can be created
for any resource-scarce language incorporating the
real world errors. Deep Learning techniques have
shown enormous success in sequence to sequence
mapping tasks (Sutskever et al., 2014). Most of
the existing spell-checkers for Indic languages are
implemented using rule-based techniques (Kumar
et al., 2018). In this paper, we approach the
spelling correction problem for Indic languages
with Deep learning. This model can be em-
ployed for any resource-scarce language. We pro-
pose a character based Sequence-to-sequence text
Correction Model for Indic Languages (SCMIL)
which trains end-to-end.

Our main contributions in this paper are sum-
marized as follows:

• We propose a character based recurrent



147

sequence-to-sequence architecture with a
Long Short Term Memory (LSTM) encoder
and a LSTM decoder for spelling correction
of Indic languages.

• We create synthetic datasets1 of noisy and
correct word mappings for Hindi and Telugu
by collecting highly probable spelling errors
and inducing noise in clean corpus.

• We evaluate the performance of SCMIL by
comparing with various approaches such as
Statistical Machine Translation (SMT), rule-
based methods, and various deep learning
models, for this task.

2 Related Work

Significant work has been done in the field of Spell
checking for Indian languages. There are spell-
checkers available for Indian languages like Hindi,
Marathi, Bengali, Telugu, Tamil, Oriya, Malay-
alam, Punjabi.

Dixit et al. (2005) designed a rule-based spell-
checker for Marathi, a major Indian Language.
This is the first initiative for morphology-based
spell checking for Marathi. The spell-checker is
based on the rules of morphology and the rules of
orthography.

A spell-checker is designed for Telugu (Rao,
2011), an agglutinating Indian language which has
a very complex morphology. This spell-checker
is based on Morphological Analysis and Sandhi
splitting rules. It consists of two parts: a set
of routines for scanning the text (Morphological
Analyzer and sandhi splitting rules) and identify-
ing valid words, and an algorithm for comparing
the unrecognized words and word parts against a
known list of variantly spelled words and word
parts.

Another Hindi Spell-checker (Sharma and Jain,
2013) uses a dictionary with word, frequency pairs
as language model. Error detection is done by
dictionary look-up. Error correction is performed
using Damerau-Levenshtein edit distance and n-
gram technique. These candidates are ranked by
sorting in increasing order of edit distance. Words
at same edit distance are sorted in order of their
frequencies.

HINSPELL(Singh et al., 2015) is a spell-
checker designed for Hindi which is implemented

1https://github.com/PravallikaRao/SpellChecker

using a hybrid approach. Error is detected by dic-
tionary look-up. Error correction is done by using
Minimum Edit Distance technique where the clos-
est words in the dictionary to the error word are
obtained. These obtained words are given priority
using a weightage algorithm and Statistical Ma-
chine Translation (SMT).

Ambili et al. (2016) designed a Malayalam
spell-checker that detects the error by a dictio-
nary look-up approach and error correction is done
through N-gram based technique. If a word is not
present in the dictionary, it is identified as an er-
ror and N-gram based technique corrects error by
finding similarity between words and computing a
similarity coefficient.

Recently, Ghosh and Kristensson (2017) pro-
posed a Deep Learning model for text correction
and completion in keyboard decoding for English.
This is a first attempt at text correction using Deep
Neural Networks which gave promising results.

Sakaguchi et al. (2017) approached the prob-
lem of Spell Correction using semi-character Re-
current Neural Networks on English data.

Studies of spell checking techniques for In-
dian Languages (Kumar et al., 2018; Gupta
and Mathur, 2012) show that the existing spell-
checkers have two major steps: Error detection
and error correction. Error detection is done by
dictionary look-up. Error correction consists of
two steps: the generation of candidate correc-
tions and the ranking of candidate corrections.
The most studied spelling correction algorithms
are: edit distance, similarity keys, rule-based
techniques, n-gram-based techniques, probabilis-
tic techniques, neural networks, and noisy channel
model. All of these methods can be thought of
as calculating a distance between the misspelled
word and each word in the dictionary or index.
The shorter the distance the higher the dictionary
word is ranked.

While there have been a few attempts to de-
sign spell-checkers for English and few other lan-
guages using Machine Learning, to the best of our
knowledge, no such prior work has been attempted
for Indian languages.

3 Model Description

We address the spelling correction problem for
Indic languages by having a separate corrector
network as an encoder and an implicit language
model as a decoder in a sequence-to-sequence at-



148

tention model that trains end-to-end.

3.1 Sequence-to-sequence Model

Sequence-to-sequence (seq2seq) models
(Sutskever et al., 2014; Cho et al., 2014)
have enjoyed great success in a variety of tasks
such as machine translation, speech recognition,
image captioning, and text summarization. A
basic sequence-to-sequence model consists of
two neural networks: an encoder that processes
the input and a decoder that generates the output.
This model has shown great potential in input-
output sequence mapping tasks like machine
translation. An input side encoder captures the
representations in the data, while the decoder gets
the representation from the encoder along with
the input and outputs a corresponding mapping to
the target language. Intuitively, this architectural
set-up seems to naturally fit the regime of map-
ping noisy input to de-noised output, where the
corrected prediction can be treated as a different
language and the task can be treated as Machine
Translation.

3.2 System Architecture

The Recurrent Neural Network (RNN) (Rumelhart
et al., 1986; Werbos, 1990) is a natural generaliza-
tion of feed-forward neural networks to sequences.
Given a sequence of inputs (x1, . . . , xT ), a stan-
dard RNN computes a sequence of outputs (y1,
. . . , yT ) by iterating the following equation:

ht = sigm(W hxxt +W hhht−1) (1)

yt = W yhht (2)

The RNN can easily map sequences to se-
quences whenever the alignment between the in-
puts the outputs is known ahead of time. In
fact, recurrent neural networks, long short-term
memory networks (Hochreiter and Schmidhu-
ber, 1997), and gated recurrent neural networks
(Chung et al., 2014) have become standard ap-
proaches in sequence modelling and transduction
problems such as language modelling and ma-
chine translation.

RNNs struggle to cope with long-term depen-
dency in the data due to vanishing gradient prob-
lem (Hochreiter, 1998). This problem is solved
using Long Short Term Memory (LSTM) recur-
rent neural networks.

SCMIL has the similar underlying architecture
of sequence-to-sequence models. The encoder and
decoder in SCMIL operate at character level.

Encoder: In SCMIL, the encoder is a character
based LSTM. With LSTM as encoder, the input se-
quence is modeled as a list of vectors, where each
vector represents the meaning of all characters in
the sequence read so far.

Decoder: The decoder in SCMIL is a character
level LSTM recurrent network with attention. The
output from the encoder is the final hidden state of
the character based LSTM encoder. This becomes
the input to the LSTM decoder.

By letting the decoder have an attention mecha-
nism (Bahdanau et al., 2014), the encoder is re-
lieved from the burden of having to encode all
information in the source sequence into a fixed-
length vector. With attention, the information can
be spread throughout the sequence of annotations,
which can be selectively retrieved by the decoder
accordingly. The attention mechanism computes a
fixed-size vector that encodes the whole input se-
quence based on the sequence of all the outputs
generated by the encoder as opposed to the plain
encoder-decoder model which looks only at the
last state generated by the encoder for all the slices
of the decoder.

Thus, SCMIL is a sequence-to-sequence atten-
tion model with Bidirectional RNN encoder and
attention decoder which is trained end-to-end hav-
ing a character based representation on both en-
coder and decoder sides.

3.3 Training details

All the code is written in Python 2.7 us-
ing tf-seq2seq (Britz et al., 2017), a general-
purpose encoder-decoder framework for Tensor-
flow (Abadi et al., 2016) deep learning library ver-
sion 1.0.1. Both the encoder and the decoder are
jointly trained end-to-end on the synthetic datasets
we created. SCMIL has a learning rate of 0.001,
batch size of 100, sequence length of 50 (charac-
ters) and number of training steps 10,000. The size
of the encoder LSTM cell is 256 with one layer.
The size of the decoder LSTM cell is 256 with
two layers. We use Adam optimization (Kingma
and Ba, 2014) for training SCMIL. The charac-
ter embedding dimension are fixed to 256 and the
dropout rate to 0.8.



149

4 Experiments and Results

We performed experiments with SCMIL and other
models using synthetic datasets which we created
for the Indic languages: Hindi and Telugu. Hindi
is the most prominent Indian language and the
third most spoken language in the world. Telugu
is the most widely spoken Dravidian language in
the world and third most spoken native language
in India.

4.1 Dataset details

Due to lack of data with error patterns in Indic
languages, we have built a synthetic dataset that
SCMIL is trained on. Initially, we create data lists
for Hindi and Telugu. For this, we have extracted
a corpus of most frequent Hindi words2 and most
frequent Telugu words3. We have also extracted
Hindi movie names and Telugu movie names of
the movies released between the years 1930 and
2018 from Wikipedia which constitute phrases in
the data lists. Thus, the Hindi and Telugu data lists
consist of words and phrases consisting maximum
of five words.

For each data instance in the data list, multiple
noisy words are generated by introducing error.
The type of errors include insertion, deletion, sub-
stitution of one character, and word fusing. Spaces
between words are randomly dropped in phrases to
simulate the word fusing problem. The list of er-
rors for Hindi and Telugu is created by collecting
the highly committed spelling errors users make
in each of these languages. We created this error
list from linguistic resources and with help from
language experts. The language experts analyzed
Hindi and Telugu usage and listed the most prob-
able errors. These errors are based on observa-
tions on real data and lexicon of Hindi and Telugu.
Thus, the synthetic datasets are made as close as
possible to real world user-generated data.

Table 2 shows the example of generation of
noisy words corresponding to a correct word con-
sidering a Hindi word. Thus, the pairs of noisy
word and original word constitute the parallel data
for training. Table 1 gives the details about size of
the synthetic datasets for Hindi and Telugu.

4.2 Baseline Methods

We perform experiments on various models. The
datasets are divided into train, dev, test partitions

2https://ltrc.iiit.ac.in/download.php
3https://en.wiktionary.org/Frequency lists/Telugu

randomly in the ratio 80:10:10 respectively. In all
our results, the models learn over the train parti-
tion, get tuned over the dev partition, and are eval-
uated over the test partition.

We train a SMT model using Moses (Koehn
et al., 2007) on Hindi and Telugu synthetic
datasets. This is our main baseline model. The
standard set of features is used, including a phrase
model, length penalty, jump penalty and a lan-
guage model. This SMT model is trained at the
character-level. Hence, the system learns map-
pings between character-level phrases. Moses
framework allows us to easily conduct experi-
ments with several settings and compare with
SCMIL.

Other baselines are character based sequence-
to-sequence attention models: CNN-GRU and
GRU-GRU. All the models compared in this set
of experiments look at batch sizes of 100 inputs
and a maximum sequence size of 50 characters
with a learning rate of 0.001 and run for 10000
steps. Throughout, the size of GRU cell is 256
with one layer. The CNN consists of 5 filters with
sizes varying in the range of [2,3,4]. These multi-
ple filters of particular widths produce the feature
map, which is then concatenated and flattened for
further processing.

4.3 Results and Analysis

Table 3 shows the accuracies reported by SCMIL
and SMT methods. To check if Moses performs
better on larger training data, we increased the
size of Hindi synthetic dataset to 20567 and per-
formed SMT. The accuracy value was 62% which
is almost equivalent to the accuracy on original
synthetic dataset. SCMIL outperforms Moses, an
SMT technique by a huge margin. In Table 3,
we find that SCMIL performs better than other
sequence-to-sequence models with different con-
volutional and recurrent encoder-decoder combi-
nations. These accuracies are on test set over
the entire sequence. Thus, the results show that
SCMIL performs better than all other baseline
models. Our results support the conclusion by
Britz et al. (2017) that LSTMs outperform GRUs.

The rule-based spell-checker for Hindi, HIN-
SPELL (Singh et al., 2015) reported an accuracy
of 77.9% on a data of 870 misspelled words ran-
domly collected from books, newspapers and peo-
ple etc. Te data used in Singh et al. (2015) and the
HINSPELL system are not available. Hence, we



150

Language High Frequency Words Movie names Size of parallel corpus
Hindi 15000 3021 108587
Telugu 10000 3689 92716

Table 1: Details of the synthetic datasets for Hindi and Telugu.

Correct word Noisy words
þ�mA khAnF (prema kahaanii)

þ�m khAnF þ�m khnF (prem kahanii)
(prem kahaanii) þ�mkhAnF (premkahaanii)

þ�m khAEn (prem kahaani)
þ{m khAnF (praim kahaanii)

Table 2: Example of noisy words generation for a
Hindi word with corresponding transliterations.

implemented HINSPELL using Shabdanjali dic-
tionary4 consisting of 32952 Hindi word. This
system when tested on our Hindi synthetic dataset,
gave an accuracy is 72.3%. This accuracy being
lower than the original HINSPELL accuracy can
be accounted to larger size of testing data and in-
clusion of out-of-vocabulary words. Thus, SCMIL
outperforms HINSPELL by reporting an accuracy
of 85.4%.

In Table 4, we have shown predictions given by
SCMIL on few Hindi inputs. The results show that
errors are contextually learned by the model. It
can also be seen that the model has learned the
word fusing problem. Also, the error detection
step is not required separately as SCMIL trains
end-to-end and learns the presence of noise in the
input based on context. The advantage of SCMIL
over rule-based techniques is that it can handle
out of vocabulary words as it is trained at char-
acter level. For example, the last entry in the Ta-
ble 4, is the English word bomb spelled in Hindi.
The model has learned it and corrected when mis-
spelled in Hindi as bombh. Dictionary based tech-
niques fail in such cases. The model fails in few
cases when it corrects one character of the mis-
spelled word instead of other like the example in
fourth row of 4.

The slightly higher accuracy of SCMIL on Tel-
ugu data than on Hindi data might be due to the
fact that the highly probable spelling errors used in
data creation are slightly less in number for Telugu
when compared to Hindi. This can be handled for
any language with more errors by increasing size

4https://ltrc.iiit.ac.in/download.php

Model Hindi(%) Telugu(%)
Moses (SMT) 62.8 64.7
CNN-GRU 74.4 79.7
GRU-GRU 77.6 84.3
SCMIL 85.4 89.3

Table 3: Accuracy of spelling correction on Hindi
and Telugu synthetic datasets given by Moses,
character-based deep learning models(CNN-GRU
and GRU-GRU), and SCMIL.

of dataset which includes enough data instances
capturing each kind of error.

5 Future Work

This paper is the initial approach to automatic
spelling correction for Indic languages using Deep
Learning and we have obtained results that are
competitive with the existing techniques. SCMIL
can be improved and extended in many ways.

SCMIL presently deals with spelling correc-
tions at word level. It can be further extended
to automatically make not only spelling correc-
tions but also grammar corrections at phrase
level/sentence level.

The synthetic dataset can be improved by col-
lecting noisy words from different platforms like
social media, blogs etc. and introducing these real
world errors into clean corpus. This will improve
the performance of the model on user-generated
data. Further, for proper evaluation of the model,
The model should be tested on real world user-
generated parallel data.

One more potential improvement would be to
change the training data from words and phrases
to sentences. This will help in achieving context
based spelling correction.

The spelling correction model can be extended
to a text correction and completion model. Chang-
ing the decoder from character-level to word-level
will add the functionality of auto completion. This
will improve the scope of the model in various ap-
plications.



151

Input Prediction Correct Output
rAjEs rAjsF rAjsF
(raajasi) (raajasii) (raajasii)
doaA K�\ do aA K�\ do aA K�\
(dhoaankhei) (dho aankhei) (dho aankhei)
a\s a\f a\f
(ans) (ansh) (ansh)
dfAvtr dfvtr dfAvtAr
(dhashaavatar) (dhashavatar) (dhashaavataar)
bA�MB bA�Mb bA�Mb
(baambh) (baamb) (baamb)
bA�MB bA�Mb bA�Mb
(baambh) (baamb) (baamb)

Table 4: Qualitative evaluation of predictions by
SCMIL on few Hindi inputs along with expected
outputs and corresponding transliterations.

6 Summary and Conclusion

In this paper, we proposed SCMIL for automatic
spelling correction in Indic languages which em-
ploys a recurrent sequence-to-sequence attention
model to learn the spelling corrections from noisy
and correct word pairs. We created a parallel
corpus of noisy and correct spellings for training
by introducing spelling errors in correct words.
We validated SCMIL on these synthetic datasets
created for Hindi and Telugu. We implemented
spelling correction using Moses, a SMT system
as a baseline model. We evaluated our system
against existing techniques for Indic languages
and showed favorable results. Finally, we dis-
cussed possible extensions to improve the scope
of SCMIL and perform better evaluation.

SCMIL can be used in applications like search
engines as we have shown that it automatically
corrects the input text in Indic languages. Most
of the deep learning models train on billions of
data instances. On the contrary, SCMIL trains on
a dataset of less than a million parallel instances
and gives competitive results. This shows that our
approach can be used for automatic spelling cor-
rection of any resource-scarce language.

References

Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng
Chen, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Geoffrey Irving, Michael Isard,
et al. 2016. Tensorflow: A system for large-scale

machine learning. In OSDI, volume 16, pages 265–
283.

Farooq Ahmad and Grzegorz Kondrak. 2005. Learning
a spelling error model from search query logs. In
Proceedings of the conference on Human Language
Technology and Empirical Methods in Natural Lan-
guage Processing, pages 955–962. Association for
Computational Linguistics.

Ambili, Panchami KS, and Neethu Subash. 2016. Au-
tomatic error detection and correction in malayalam.
International Journal of Science Technology and
Engineering(IJSTE), 3(2).

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Yonatan Belinkov and Yonatan Bisk. 2017. Synthetic
and natural noise both break neural machine transla-
tion. arXiv preprint arXiv:1711.02173.

D. Britz, A. Goldie, T. Luong, and Q. Le. 2017. Mas-
sive Exploration of Neural Machine Translation Ar-
chitectures. ArXiv e-prints.

Denny Britz, Anna Goldie, Thang Luong, and Quoc
Le. 2017. Massive exploration of neural ma-
chine translation architectures. arXiv preprint
arXiv:1703.03906.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using rnn encoder-decoder
for statistical machine translation. arXiv preprint
arXiv:1406.1078.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho,
and Yoshua Bengio. 2014. Empirical evaluation of
gated recurrent neural networks on sequence model-
ing. arXiv preprint arXiv:1412.3555.

Veena Dixit, Satish Dethe, and Rushikesh K Joshi.
2005. Design and implementation of a morphology-
based spellchecker for marathi, an indian language.
ARCHIVES OF CONTROL SCIENCE, 15(3):301.

Shaona Ghosh and Per Ola Kristensson. 2017. Neural
networks for text correction and completion in key-
board decoding. arXiv preprint arXiv:1709.06429.

Neha Gupta and Pratistha Mathur. 2012. Spell check-
ing techniques in nlp: a survey. International Jour-
nal of Advanced Research in Computer Science and
Software Engineering, 2(12).

Saša Hasan, Carmen Heger, and Saab Mansour. 2015.
Spelling correction of user search queries through
statistical machine translation. In Proceedings of the
2015 Conference on Empirical Methods in Natural
Language Processing, pages 451–460.

http://arxiv.org/abs/1703.03906
http://arxiv.org/abs/1703.03906
http://arxiv.org/abs/1703.03906


152

Sepp Hochreiter. 1998. The vanishing gradient prob-
lem during learning recurrent neural nets and prob-
lem solutions. International Journal of Uncer-
tainty, Fuzziness and Knowledge-Based Systems,
6(02):107–116.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, et al. 2007. Moses: Open source
toolkit for statistical machine translation. In Pro-
ceedings of the 45th annual meeting of the ACL on
interactive poster and demonstration sessions, pages
177–180. Association for Computational Linguis-
tics.

Rakesh Kumar, Minu Bala, and Kumar Sourabh. 2018.
A study of spell checking techniques for indian lan-
guages. JK Research Journal in Mathematics and
Computer Sciences, 1(1).

Uma Maheshwar Rao. 2011. Telugu spell-checker.
International Telugu Internet Conference Proceed-
ings.

David E Rumelhart, Geoffrey E Hinton, and Ronald J
Williams. 1986. Learning representations by back-
propagating errors. nature, 323(6088):533.

Keisuke Sakaguchi, Kevin Duh, Matt Post, and Ben-
jamin Van Durme. 2017. Robsut wrod reocgini-
ton via semi-character recurrent neural network. In
AAAI, pages 3281–3287.

Amit Sharma and Pulkit Jain. 2013. Hindi spell
checker. Indian Institute of Technology Kanpur.

Harsharndeep Singh et al. 2015. Design and imple-
mentation of hinspell-hindi spell checker using hy-
brid approach. International Journal of Scientific
Research and Management, 3(2).

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural net-
works. In Advances in neural information process-
ing systems, pages 3104–3112.

Paul J Werbos. 1990. Backpropagation through time:
what it does and how to do it. Proceedings of the
IEEE, 78(10):1550–1560.

W John Wilbur, Won Kim, and Natalie Xie. 2006.
Spelling correction in the pubmed search engine. In-
formation retrieval, 9(5):543–564.


