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Abstract
Generating texts of different sentiment labels is get-
ting more and more attention in the area of natu-
ral language generation. Recently, Generative Ad-
versarial Net (GAN) has shown promising results
in text generation. However, the texts generated
by GAN usually suffer from the problems of poor
quality, lack of diversity and mode collapse. In this
paper, we propose a novel framework - SentiGAN,
which has multiple generators and one multi-class
discriminator, to address the above problems. In
our framework, multiple generators are trained si-
multaneously, aiming at generating texts of differ-
ent sentiment labels without supervision. We pro-
pose a penalty based objective in the generators to
force each of them to generate diversified examples
of a specific sentiment label. Moreover, the use of
multiple generators and one multi-class discrimi-
nator can make each generator focus on generat-
ing its own examples of a specific sentiment label
accurately. Experimental results on four datasets
demonstrate that our model consistently outper-
forms several state-of-the-art text generation meth-
ods in the sentiment accuracy and quality of gener-
ated texts.

1 Introduction
Emotional intelligence is an important part of artificial intelli-
gence. Automatic understanding and generation of sentimen-
tal texts not only make machines more friendly to humans,
but also make them look more intelligent. Nowadays sen-
timent classification on short texts has made good progress.
For instance, one of the state-of-the-art sentiment classifiers
has achieved an accuracy of 90% on the Stanford Sentiment
Treebank dataset [Hu et al., 2016]. But compared with the
success of sentiment classification, generic sentimental text
generation is challenging and very few recent attempts have
been made to investigate it. Previous work has been mostly
limited to task-specific applications and just use hidden vari-
ables to indirectly control the sentiment labels of generated
texts, especially in emotional response generation [Zhou et
al., 2017; Zhou and Wang, 2017]. It is difficult to design an
appropriate and specific training objective in deep generative

models for sentimental text generation. Generative Adversar-
ial Net (GAN) [Goodfellow et al., 2014] is a good solution to
this problem which uses a discriminator instead of a specific
objective to guide the generator. The main intuition is that
since text sentiment classification is very strong, we can use
the classifier to guide the generation of sentimental texts.

In this study, we aim to generate a variety of high-quality
sentimental texts using GAN. That is, in the absence of paral-
lel corpus, we can automatically generate a variety of control-
lable sentimental texts without supervision. However, there
are a few challenges to be addressed when applying GAN
to generate sentimental texts. Firstly, the discrete nature of
texts leads to a sampling step that is not differentiable, which
makes it impossible for the gradient to pass from the discrim-
inator to the generator. Recently, some studies use reinforce-
ment learning which treats the process of discriminator guid-
ing generator as a reinforcement learning policy [Yu et al.,
2017; Guo et al., 2017]. Even though, the generated texts
face the problem of poor quality. Secondly, one of the ma-
jor drawbacks of GAN is the problem of “mode collapse”,
and it has been empirically proven that GAN prefers to gen-
erate samples around only a few modes whilst ignoring other
modes [Theis et al., 2016]. So there is a lack of diversity in
generated texts.

We propose a new text generation framework - SentiGAN
to address the above issues and generate texts of different
sentiment labels. SentiGAN consists of multiple genera-
tors and one multi-class discriminator, which are trained si-
multaneously. Like [Yu et al., 2017], we consider the se-
quence generation procedure as a sequential decision mak-
ing process. We regard each generative model as a stochastic
parametrized policy and use Monte Carlo search to approx-
imate the state-action value. Then we use the discriminator
to evaluate the sequence and guide the learning of the gener-
ative model. But unlike previous works, our model contains
multiple generators and one discriminator. Firstly, we pro-
pose a novel penalty based objective, which adopts a more
reasonable measure and aims to minimize overall penalties
instead of maximizing rewards. It is proved both experimen-
tally and theoretically that, our penalty based objective can
force each generator to generate diversified texts of a specific
sentiment label, rather than generating examples which are
repetitive but “safe” and “good”. Secondly, the use of our
discriminator’s multi-class classification objective can makes
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generators more focused on generating their own examples
of specific sentiment labels, and stay away from other types
of sentiments. This improves the sentiment accuracy of the
generated texts.

We use a well-performed sentiment classifier as evaluator
to verify the sentiment accuracy of the generated texts, as well
as several other metrics (i.e., fluency, novelty, diversity, intel-
ligibility) to measure the quality of generated texts from dif-
ferent aspects. We compare our model with several state-of-
the-art deep generative models, including RNNLM [Mikolov
et al., 2011], GAN and its variants [Yu et al., 2017; Lin et al.,
2017; Guo et al., 2017], VAEs [Kingma and Welling, 2014;
Kingma et al., 2014]. Experimental results on four datasets
(i.e., movie reviews, beer reviews, custom reviews and a syn-
thetic dataset) demonstrate that our model consistently out-
performs the existing models in both the sentiment accuracy
and quality of generated texts.

The major contributions of this paper are summarized as
follows:
1) We propose a novel framework SentiGAN to generate

generic, diversified and high-quality sentimental texts of
different sentiment labels.

2) We propose a new penalty based objective to make each
generator in SentiGAN produce diversified texts of a spe-
cific sentiment label.

3) Extensive experiments are performed on four datasets and
the results demonstrate the efficacy and superiority of our
proposed model.

2 Related Work
Unsupervised text generation is an important research area
in natural language processing. A standard recurrent neural
network language model [Mikolov et al., 2011] predicts each
word of a sentence conditioned on the previous word and an
evolving hidden state. However, it suffers from two major
drawbacks when used to generate texts. First, RNN based
models are always trained through the maximum likelihood
approach, which suffers from exposure bias [Bengio et al.,
2015]. Second, the loss function used to train the model is at
word level but the performance is typically evaluated at sen-
tence level. There are some researches which use generative
adversarial network (GAN) to solve the problems.

Generative Adversarial Nets (GANs) [Goodfellow et al.,
2014] are a recent novel class of deep generative mod-
els. Though GANs achieve great successes on computer vi-
sion applications [Denton et al., 2015; Isola et al., 2016;
Salimans et al., 2016], there are only a few progresses in
natural language generation because the discrete sequences
are not differentiable. Some works attempt to solve this
problem, including Gumbel-softmax distribution [Kusner and
Hernández-Lobato, 2016], Professor Forcing [Lamb et al.,
2016] and so on. However, it is more common to tackle
the non-differentiable problem with a strategic gradient of re-
inforcement learning, including SeqGAN [Yu et al., 2017],
RankGAN [Lin et al., 2017], LeakGAN [Guo et al., 2017].
The effects of these variants of GANs are not very differ-
ent, and none of these methods can generate samples with di-
verse attributes. Without loss of generality, we will focus on

comparison with SeqGAN in this study. Conditional GAN
[Mirza and Osindero, 2014] is a variant of GAN that pro-
duces controlled samples which uses a condition variable to
guide the generation. This is also one of our main compar-
isons. LabelGAN [Salimans et al., 2016] uses a discrimina-
tor to identify multiple categories which is similar to us, but
it has only one generator and does not solving discrete prob-
lems in text generation. Other superior unsupervised deep
generative models include Variational Autoencoders (VAE)
[Kingma and Welling, 2014], semi-supervised VAE (S-VAE)
[Kingma et al., 2014]. VAE consists of encoder and generator
networks which encode a data example to a latent representa-
tion and generate samples from the latent space, respectively.
Although VAE does not have the problem of generating dis-
crete data, it has more constraints and restrictions than GAN,
and we will also compare our model with it in the experi-
ments.

Other related work includes product review generation
conditioned on specific inputs (e.g., user, product, aspect, rat-
ings) [Dong et al., 2017; Zang and Wan, 2017; Lipton et al.,
2015]. These methods usually need a large parallel corpus
for learning an encoder-decoder model. Different from these
studies, we aim to generate a variety of generic reviews of
different sentiment labels.

3 SentiGAN
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Figure 1: The framework of SentiGAN with k generators and one
multi-class discriminator.

3.1 Overall Framework
The framework of our proposed SentiGAN is shown in Fig-
ure 1. Supposing we want to generate texts with k types
of sentiments(i.e., k sentiment labels), we use k generators
{Gi(X|S; θig)}i=ki=1 and one discriminator D(X; θd), where
θig , θd are the parameters of the i-th generator and the dis-
criminator respectively, and the prior input noise z sampled
from the distribution Pz (e.g., a normal distribution) is used
to initialize the generator’s input.

The whole framework can be divided into two adversar-
ial learning objectives: generator learning and discriminator
learning. The goal of the i-th generatorGi is to generate texts
with the i-th sentiment type that can deceive the discrimina-
tor. Specifically, it aims to minimize the penalty based ob-
jective that we propose. Instead, the goal of the discrimina-
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tor is to distinguish between fake texts (texts generated by
generators) and real texts with k sentiment types as much as
possible, which is the multi-class classification objective we
adopt.

Without loss of generality, we set k to 2 in the experi-
ments and let SentiGAN generate two types of sentimental
texts (positive and negative).

Generator Learning
To solve the problem that the gradient cannot pass back to
the generative model when the output is discrete, we for-
malize the text generation problem as a sequential decision
making process [Bachman and Precup, 2015]. That is, at
each timestep t, we train a generator Gi to produce a se-
quence X1:t = {X1, ..., Xt}, where Xt represents a word
token in the given vocabulary C. Gi(Xt+1|St; θig) means
the probability that selecting the (t + 1)-th word depends on
the previously generated words (its current state), denoted as
St = {X1, ..., Xt}. And we define a new penalty based loss
function L(X):

L(X) = Gi(Xt+1|St; θig) · V
Gi

Di
(St, Xt+1) (1)

where V Gi

Di
(St, Xt+1) is the penalty for a sequence X1:t+1

which is calculated by the discriminator. Finally, the objec-
tive of the i-th generator Gi(X|S; θig) is to minimize the total
penalty based value:

JGi(θ
i
g) = EX∼Pgi

[L(X)]

=

t=|X|−1∑
t=0

Gi(Xt+1|St; θig) · V
Gi

Di
(St, Xt+1)

(2)

where Xt ∈ C. Because the discriminator can only judge
on a complete sequence, we apply Monte Carlo search with
roll-out policy Gi to sample the unknown last |X| − t tokens.
Thus, Our penalty function for the i-th generator is calculated
as:

V Gi

Di
(St−1, Xt) =

{
1
N

∑N
n=1 (1−Di(X

n
1:t; θd)) t < |X|

1−Di(X1:t; θd) t = |X|
(3)

where Xn
1:t is N-time Monte Carlo search sampled based on

the roll-out policy Gi and the current state, and Di(X
n
1:t; θd)

is the sentence probability given by the discriminator that
Xn

1:t is the real i-th type sentimental text.
In addition, our generator here is a simple layer of Long

Short-Term Memory (LSTM) [Hochreiter and Schmidhuber,
1997] which outputs the t-th word according to the distribu-
tion:

p(Xt) = softmax(LSTM θg (ht−1, Xt−1)) (4)

where the parameters of the LSTMθg is θg , and ht is the hid-
den state of timestep t. It is worth noticing that our generator
can be easily extended to other types of generators as well.

Discriminator Learning
Inspired by the discriminator formulation for semi-supervised
learning [Salimans et al., 2016], we use a multi-class classifi-
cation objective that requires the discriminator to distinguish

Algorithm 1 The adversarial training process in SentiGAN

Input: Input noise, z; Generators, {Gi(X|S; θig)}i=k
i=1 ; Discrim-

inator,D(X; θd); Real text dataset with k types of sentiment,
T = {T1, ..., Tk};

Output: Well trained generators, {Gi(X|S; θig)}i=k
i=1 ;

1: Initialize {Gi}i=k
i=1 , D with random weights;

2: Pre-train {Gi}i=k
i=1 using MLE on T ;

3: Generate fake texts F = {Fi}i=k
i=1 using {Gi}i=k

i=1 ;
4: Pre-train D(X; θd) using {T1, ..., Tk, F};
5: repeat
6: for g-steps do
7: for i in 1 ∼ k do
8: Generate fake texts using Gi(z; θ

i
g);

9: Calculate penalty V Gi
Di

by Eq (3) ;
10: Update Gi(z; θ

i
g) by minimizing Eq (2);

11: end for
12: end for
13: for d-steps do
14: Generate fake texts F = {Fi}i=k

i=1 using
{Gi(X|S; θig)}i=k

i=1 ;
15: Update D(X; θd) using {T1, ..., Tk, F} by minimiz-

ing Eq (5);
16: end for
17: until SentiGAN converges
18: return ;

between the real texts with each sentiment type and the gen-
erated texts. In more detail, given the set of k generators,
the discriminator produces a softmax probability distribution
over k + 1 classes. The score at i-th (i ∈ {1, .., k}) index
(Di) represents the probability that it belongs to the real i-th
type sentimental texts, and the score at (k + 1)-th index rep-
resents the probability that the sample is generated by gener-
ators. The objective function of the discriminator is to mini-
mize:

JD(θd) =− EX∼Pg
logDk+1(X; θd)

−
k∑
i=1

EX∼Pri
logDi(X; θd)

(5)

where Pg is texts generated by all generators, Pri is real i-
th type sentimental texts, and Di(X; θd) represents the i-th
index of D(X; θd). Since CNN has recently been shown of
great effectiveness in text classification [Zhang and Lecun,
2015], our discriminator here is a layer of CNN which has
multiple filters.

We perform the adversarial training of generators and dis-
criminator, and train them alternately, as shown in Algo-
rithm 1.

3.2 The Multi-Class Classification Objective
Here we introduce how our multi-class classification objec-
tive can force each generator to focus more on generating its
own sentimental texts that are far from sentimental texts gen-
erated by other generators, thus it helps improve the sentiment
accuracy of the generated texts.

Firstly, the optimal i-th generator can learn the distribution
of the real texts with the i-th sentiment. The objective func-
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tion of the discriminator is show in Eq (5). Using
∑k+1
i=1 Di =

1, Di ∈ [0, 1], ∀i, we obtain the optimal distribution learned
by the discriminator D: Di(X; θd) =

Pri
(X)∑k

i=1 Pri
(X)+Pg(X)

,

i = {1, ...k}, Dk+1(X; θd) =
Pg(X)∑k

i=1 Pri
(X)+Pg(X)

. Then by
using Eq (5), generators’ goal is to minimize the following:

EX∼Pg
log[

Pg(X)

Pavg(X)
] +

k∑
i=1

EX∼Pri
log[

Pri(X)

Pavg(X)
]

− (k + 1)log(k + 1)

=KL(
k∑
i=1

Pgi(X)||Pavg(X)) +
k∑
i=1

KL(Pri(X)||Pavg(X))

− (k + 1)log(k + 1),
(6)

where Pavg(x) =
∑k

i=1 Pri
(X)+Pg(X)

k+1 , KL means Kull-
back–Leibler divergence. The above objective obtains its
global minimum if Pgi = Pri , (i = 1, ..., k) with the objec-
tive value of−(k+1)log(k+1). In the case of one generator
(k = 1), Eq (6) obtains the Jensen-Shannon divergence (JS)
with the minimum objective value of −log4.

Secondly, while keeping θd constant, the i-th generator
aims to minimize the penalty (V Gi

Di
) given by the discrimi-

nator. Under the setting of
∑k+1
i=1 Di = 1, it is equivalent

to minimize
∑k+1
j=1,j 6=iDj(X; θd). Intuitively, in order to get

lower penalties from the discriminator, the texts generated by
the i-th generator must be more consistent with the i-th sen-
timent type and be far away from other sentiment types.

3.3 The Penalty-Based Objective
Here we introduce how the penalty based objective forces
generators to generate diversified examples rather than gen-
erate repetitive and “safe” samples, thus it helps improve the
diversity and quality of generated texts. We compare the gen-
erator’s objective function of GAN, SeqGAN and our Senti-
GAN as follows:

JG(X) =


EX∼Pg

[−log(D(X; θd))] GAN
EX∼Pg [−log(G(X|S; θg)D(X; θd))] SeqGAN
EX∼Pg

[G(X|S; θg)V (X)] SentiGAN
(7)

As can be seen, there are two main improvements in our ob-
jective function.

Firstly, our penalty based objective can be considered as a
measure of wasserstein distance [Arjovsky et al., 2017] which
always provides meaningful gradients, even when the distri-
butions of Pr and Pg do not overlap. But KL and JS can not
do it. The wasserstein distance of the two distributions is:

W (Pr, Pg) =
1

K
sup||L||L≤KEX∼Pr [L(X)]−EX∼Pg [L(X)].

(8)
where functionL(X) is needed to satisfy Lipschitz continuity
and its Lipschitz constant isK. Since the derivative of log(x)
has no upper bound, it does not satisfy Lipschitz continuity,

that is, it can not be used as L(X) here. In this paper, we
define L(X) as Eq(1).

Secondly, we use penalty V (X) instead of reward
D(X) like SeqGAN. Our penalty-based loss function
G(X|S; θg)V (X) can be thought of as adding G(X|S; θg)
to the reward-based loss function (−G(X|S; θg)D(X; θd)).

G(X|S; θg)V (X) =G(X|S; θg)(1−D(X; θd)

= G(X|S;θg)−G(X|S; θg)D(X; θd)
(9)

Therefore, our penalty-based loss function forces the gener-
ator to prefer a smaller G(X|S; θg). Thus it results in the
generation of diversified samples, rather than repetitive but
“good” samples.

4 Experiments
4.1 Experiment Setup
The problem of generating very long texts is very challeng-
ing in the text generation area and we will study this problem
in our future work. Therefore, we simply refer to the work
of [Hu et al., 2017] and focus on generating short sentences
(length≤ 15 words) of two sentiment types (positive and neg-
ative) on three real datasets.

Movie Reviews (MR). We use Stanford Sentiment Tree-
bank [Socher et al., 2013] which has two sentiment classes
(negative and positive). The original dataset has a total of
9613 sentences. We select sentences containing at most 15
words, and the resulting dataset contains 2133 positive sen-
tences and 2370 negative sentences.

Beer Reviews (BR). We use the data scraped from Beer-
Advocate [Mcauley and Leskovec, 2013]. BeerAdvocate is
a large online review community boasting 1,586,614 reviews
of 66,051 distinct items composed by 33,387 users. Each re-
view is accompanied by a number of numerical ratings, cor-
responding to “appearance”, “aroma”, “palate”, “taste”, and
also the user’s “overall” impression. We select sentences con-
taining at most 15 words, and the resulting dataset contains
1437767 positive sentences and 11202 negative sentences.

Customer Reviews (CR). We use customer reviews of var-
ious products [Hu and Liu, 2004]. We select sentences con-
taining at most 15 words, and the resulting dataset contains
1024 positive sentences and 501 negative sentences.

We train our model on each dataset respectively, and ran-
domly initialize word embeddings with the dimension size of
300. The generators are set as single-layer LSTM-RNNs with
input/hidden dimension size of 300 and max sample length
of 15 words. The CNN in our discriminator is the same as
[Zhang and Lecun, 2015]. The N in Monte Carlo search is
set as 15. In the per-training step, we pre-train generators for
120 steps, pre-train the discriminator for 50 steps. In adver-
sarial training, the g-steps is 5 and d-steps is 1. The optimiza-
tion algorithm is RMSProp. We implement our model based
on Tensorflow and use a TITAN X graphic card for learning.

4.2 Sentiment Accuracy of Generated Texts
We use a state-of-the-art sentiment classifier [Hu et al., 2016]
which achieves an accuracy of 90% on the SST test set, to au-
tomatically evaluate the sentiment accuracy of the generated
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Accuracy MR BR CR
Real Data 0.892 0.874 0.846
RNNLM 0.622 0.595 0.552
SeqGAN 0.717 0.684 0.632

VAE 0.751 0.721 0.643
SentiGAN(k=1) 0.803 0.750 0.731

C-GAN 0.822 0.773 0.762
S-VAE 0.831 0.793 0.727

SentiGAN(k=2) 0.885 0.841 0.803

Table 1: Comparison of sentiment accuracy of generated sentences.
The real data is the training corpus.

texts. We compare with several state-of-art generic text gen-
eration methods, including RNNLM [Mikolov et al., 2011],
SeqGAN [Yu et al., 2017], Variational Autoencoders(VAE)
[Kingma and Welling, 2014], Conditional GAN(C-GAN)
[Mirza and Osindero, 2014] and Semi-supervised VAE(S-
VAE) [Kingma et al., 2014]. It is worth noting that pre-
training was used for all selected baselines.

We use each model to generate 5K positive sentences and
5K negative sentences, which is trained on each of the above
three datasets, respectively. The results are shown in Table 1.
In order to investigate whether it is better to train with multi-
ple generators than a single generator, we made a comparison
with SentiGAN(k=1). Note that RNNLM, SeqGAN, Senti-
GAN(k=1) can not generate texts with two sentiment labels
simultaneously, so we train each of these models on positive
reviews and negative reviews, respectively.

From the comparison results in Table 1 we can see
that our proposed model (SentiGAN(k=2)) outperforms all
other methods, including C-GAN and S-VAE. The accuracy
achieved by our model is promisingly high, indicating that
the framework with mixture of generators and one multi-
class discriminator can make each generator to generate their
own sentimental texts better. What’s more, comparing Senti-
GAN(k=2) with SentiGAN(k=1) shows that multiple gener-
ators can help each other and thus greatly improve the sen-
timent accuracy of texts generated by each single generator.
In addition, our model remains the leading result, even on the
small CR dataset.

4.3 Quality of Generated Sentences

Further, we use four other evaluation metrics to measure the
quality of generated sentences from various aspects.

Fluency: We use a language modeling toolkit - SRILM
[Stolcke, 2002] to test the fluency of generated sentences.
SRILM calculates the perplexity of generated sentences us-
ing the language model trained on respective corpus. The
results are shown in Figure 2. We can see that C-GAN and S-
VAE are not good at keeping the fluency of sentences. How-
ever, our model maintains good fluency while generating texts
of different sentiment labels, and it even significantly outper-
forms the existing models on the small CR dataset.

Novelty: We want to investigate how different the gener-
ated sentences and the training corpus are. In other words,
we want to see if the generator simply copies the sentence in
the corpus instead of generating new ones. We calculate the

Figure 2: Comparison of fluency (Perplexity) of generated sentences
(Lower perplexity means better fluency).

Methods MR BR CR
RNNLM 0.267 0.283 0.399
SeqGAN 0.298 0.328 0.437

VAE 0.287 0.347 0.417
SentiGAN(k=1) 0.344 0.409 0.479

C-GAN 0.368 0.398 0.482
S-VAE 0.328 0.369 0.437

SentiGAN(k=2) 0.395 0.427 0.549

Table 2: Comparison of the novelty of generated sentences.

novelty of each generated sentence Si as follows:

Novelty(Si) = 1−max{ϕ(Si, Cj)}j=|C|j=1 (10)

whereC is the sentence set of the training corpus, ϕ is Jaccard
similarity function. The average values over generated sen-
tences are shown in Table 2, we can see that RNNLM, Seq-
GAN and VAE are not good at generating new sentences. On
the contrary, our model performs exceptionally well, with the
ability to generate sentences different from that in the training
corpus.

Diversity: We want to see if the generator can produce
a variety of sentences. Given a collection of generated sen-
tences S, we define the diversity of sentences Si as follows:

Diversity(Si) = 1−max{ϕ(Si, Sj)}j=|S|,j 6=ij=1 (11)

where ϕ is the Jaccard similarity function. We calculate the
maximum Jaccard similarity between each sentence Si and
other sentences in the collection. The average values are
shown in Table 3, and we can see that our model can generate
a variety of sentences, while other models can not ensure the
diversity of generated sentences.

Methods MR BR CR
Real Data 0.753 0.705 0.741
RNNLM 0.691 0.677 0.663
SeqGAN 0.641 0.636 0.619

VAE 0.661 0.658 0.620
SentiGAN(k=1) 0.711 0.687 0.668

C-GAN 0.726 0.688 0.680
S-VAE 0.692 0.687 0.649

SentiGAN(k=2) 0.741 0.713 0.708

Table 3: Comparison of the diversity of generated sentences.
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SentiGAN(k=2) C-GAN
Po

si
tiv

e a fantastic finally , simply perfect masterpiece. give it credit , this is our ’s brilliant . (Unreadable)
one of the greatest movies i have ever seen. good , bloody fun movie
funny and entertaining , just an emotionally idea but it was pretty good. makes me smile every time to get on alien . (Unreadable)
the best comedy is a science fiction , captain is like a comic legend. powerfully moving ! (Very short)

N
eg

at
iv

e one of the most disturbing and sickening movies i have ever seen. very bad comedy. (Very short)
a story which fails to rise above its disgusting source material . a mere shadow of its predecessors
the comedy is nonexistent . a timeless classic western dog ... (Wrong sentiment)
this is a truly bad movie . one of those history movie traps

Table 4: Examples sentences generated by SentiGAN and Conditional GAN trained on MR.

Intelligibility: We use human evaluation for evaluating
the intelligibility of generated sentences. We randomly ex-
tract 100 sentences from the generated sentences and then ask
three graduate students to rate each of them according to its
intelligibility. The rating score ranges from 1 to 5, and 5 is the
best. We finally take the average score across the sentences
and the three students, as shown in Figure 3. We can see
that our model performs better than all other methods and our
model can generate sentimental sentences with best intelligi-
bility. Moreover, comparing the results on different datasets,
we can see that more data can train better models with respect
to intelligibility (CR < MR < BR).

4.4 Validation of Penalty-Based Objective

Here we use a synthetic data set to test our proposed model
in the mere use of the penalty based objective (i.e., Senti-
GAN(k=1)). The synthetic data1 consists of a set of sequen-
tial tokens which can be seen as the simulated data comparing
to the real-word language data. We use the oracle model1 to
generate 10, 000 sequences as the training set. We compare
our model with various published methods (SeqGAN [Yu et
al., 2017], RankGAN [Lin et al., 2017]) on this dataset, as
shown in Table 5. And the learning curves are shown in Fig-
ure 4. The results show the effectiveness of using penalty-
based objective, and our model is better than the other models
in capturing the dependency of the sequential tokens.

1The synthetic data and the oracle model (LSTM model) are pub-
licly available at https://github.com/LantaoYu/SeqGAN

Figure 3: Comparison of intelligibility of generated sentences by
human evaluation.

Method MLE SeqGAN RankGAN SentiGAN(k=1)
NLL 9.038 8.736 8.247 6.924

Table 5: The performance comparison of different methods on the
synthetic data in terms of the negative log-likelihood (NLL) scores.

Figure 4: The illustration of learning curves. Dotted line is the end
of pre-training.

4.5 Case Study
In Table 4, we show example sentences generated by Senti-
GAN(k=2) and C-GAN trained on the MR dataset. From the
examples, we can see some problems(e.g., unreadable, very
short, wrong sentiment) with the sentences generated by C-
GAN. Whereas, our proposed model produces sentences that
are more readable, sentimentally accurate, with better quality,
and longer than that of C-GAN.

5 Conclusion and Future Work
In this paper, we propose SentiGAN, which can generate a
variety of high-quality texts of different sentiment labels. Ex-
tensive experiments demonstrate the efficacy of SentiGAN. In
future work, we will make use of more complex and sophis-
ticated generators to enhance the quality of generated texts,
especially for longer text generation. We will also apply our
model to generate texts with other kinds of labels (e.g., dif-
ferent writing styles).
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