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Abstract

It is intuitive that NLP tasks for logo-
graphic languages like Chinese should ben-
efit from the use of the glyph information in
those languages. However, due to the lack
of rich pictographic evidence in glyphs and
the weak generalization ability of standard
computer vision models on character data,
an effective way to utilize the glyph infor-
mation remains to be found.

In this paper, we address this gap by pre-
senting the Glyce, the glyph-vectors for
Chinese character representations. We
make three major innovations: (1) We use
historical Chinese scripts (e.g., bronzeware
script, seal script, traditional Chinese, etc)
to enrich the pictographic evidence in char-
acters; (2) We design CNN structures tai-
lored to Chinese character image process-
ing; and (3) We use image-classification
as an auxiliary task in a multi-task learn-
ing setup to increase the model’s ability to
generalize.

For the first time, we show that glyph-based
models are able to consistently outperform
word/char ID-based models in a wide range
of Chinese NLP tasks. Using Glyce, we are
able to achieve the state-of-the-art perfor-
mances on 13 (almost all) Chinese NLP
tasks, including (1) character-Level lan-
guage modeling, (2) word-Level language
modeling, (3) Chinese word segmentation,
(4) name entity recognition, (5) part-of-
speech tagging, (6) dependency parsing, (7)
semantic role labeling, (8) sentence seman-
tic similarity, (9) sentence intention iden-
tification, (10) Chinese-English machine
translation, (11) sentiment analysis, (12)
document classification and (13) discourse

parsing.1 2 3

1 Introduction

Chinese characters are logograms and can
be decomposed into smaller and more basic
phono-semantic compounds: pictographs (象
形xiàngxı́ng), the graphical depiction of the ob-
ject (e.g., 亻rén “person/human”, 日rı̀ “sun”,
木mù “tree/wood”); and phonetic complexes (形
声xı́ngsheng) which are used for pronunciations
(e.g., 青 in 晴). Dating back to the Han dynasty
in the 2nd century AD, the dictionary shuo-wen-
jie-zi used graphic components to index characters,
the tradition of which is still followed today. Be-
cause many Chinese characters evolved from pic-
tures (examples shown in Figure 1), the logograms
of Chinese characters encode rich information for
meanings.

1Wei Wu and Yuxian Meng contribute equally to this work.
The rest of the authors are in alphabetical order.

2All code will be released upon publication.
3Contributions: Jiwei Li (李纪为) proposed the original

idea of using glyph information to model Chinese characters,
which dates back to the summer of 2014, when he was brain-
storming with Dr. Xinlei Chen, who is now a researcher at
Facebook AI Research. Jiwei tried to implement this idea in
Apr 2015, when he was a Ph.D student at Stanford with Prof.
Dan Jurafsky. But he but did not succeed in obtaining con-
sistent performance improvements. Wei Wu (吴炜) designed
and implemented the first Glyce-char model on the char-level
language modeling task. This is the first time that glyph-
embeddings consistently outperform the charID embeddings.
Yuxian Meng (孟昱先) proposed the tianzige-CNN structure,
the image-classification auxiliary objective and the decaying
λ. Jiwei then proposed using historical Chinese scripts. Based
on these modifications, consistent performance boosts started
being observed. Yuxian is responsible for the results of word-
level language modeling and the intention classification; Wei
is responsible for the results in the segmentation, NER and
POS. Qinghong Han (韩庆宏) is responsible for the results in
semantic role labeling; Xiaoya Li (李晓雅) for the results in
Chinese-English MT; Muyu Li (李慕宇) for dependency pars-
ing and POS; Jie Mei (梅杰) for discourse parsing; Ping Nie
(聂平) for semantic similarity; and Xiaofei Sun (孙晓飞) is
responsible for the results in text classification and sentiment
analysis.
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Figure 1: Many Chinese characters evolved from pictures
(copied from Wikipedia https://en.wikipedia.org/
wiki/Chinese_characters.)

The emergence of distributed representations
(Mikolov et al., 2013; Pennington et al., 2014)
provides an elegant way to represent text seman-
tics, and have been widely applied to Chinese nat-
ural language processing. The mainstream deep
learning algorithms mostly use words or charac-
ters as basic semantic units (Zheng et al., 2013;
Chen et al., 2015b,a; Xu et al., 2016; Cai and Zhao,
2016), and learn embedding representations at the
word/character level. Glyph representations have
rarely been used.

It is intuitive that taking into account logographic
information should help semantic modeling. Re-
cent studies indirectly support this argument: Rad-
ical representations have proved to be useful in a
wide range of language understanding tasks (Shi
et al., 2015; Li et al., 2015b; Yin et al., 2016; Sun
et al., 2014; Shao et al., 2017). Using the Wubi
scheme —- a Chinese character encoding method
that mimics the order of typing the sequence of
radicals for a character on the computer keyboard
—- is reported to improve performances on Chinese-
English machine translation (Tan et al., 2018). Al-
though radical and Wubi representations encode
some information about character structures and
help to build better character representations to
some degree, both radicals and wubi representa-
tions are encoded in arbitrary IDs, and thus do not
touch upon the deeper logographic information.

Recently, there have been some efforts apply-
ing CNN-based algorithms on the visual features
of characters. Unfortunately, they do not show
consistent performance boosts (Liu et al., 2017;
Zhang and LeCun, 2017), and some even yield

Figure 2: Evolution of Chinese characters. Picture borrowed
from web.

negative results (Dai and Cai, 2017). For instance,
Dai and Cai (2017) run CNNs on char logos to
obtain Chinese character representations and used
them in the downstream language modeling task.
They reported that the incorporation of glyph rep-
resentations actually worsen the performance and
concluded that CNN-based representations do not
provide extra useful information for language mod-
eling. Using similar strategies, Liu et al. (2017)
and Zhang and LeCun (2017) test the idea on text
classification tasks, and performance boosts were
observed only in very limited number of settings.

We propose the following explanations for nega-
tive results reported in the earlier CNN-based mod-
els (Dai and Cai, 2017): (1) not using the correct
version(s) of script: Chinese character system has
a long history of evolution, as shown in Figure
2. The most famous versions include Oracle bone
script (2000 BC – 300 BC), Clerical script (200BC-
200AD), Seal script (100BC - 420 AD), Tablet
script (420AD - 588AD), etc. This evolution fol-
lows certain patterns. The characters started from
being easy-to-draw, and slowly transitioned to be-
ing easy-to-write. Also, they became less picto-
graphic and less concrete over time. The most
widely used script version to date, the Simplified
Chinese, is the easiest script to write, but inevitably
loses the most significant amount of pictographic
information. This potentially leads to the poor per-
formances of the models trained only on simplified
Chinese characters (Dai and Cai, 2017). (2) not
using the proper CNN structures: unlike ImageNet
images (Deng et al., 2009), the size of which is
mostly at the scale of 800*600, character logos
are significantly smaller (usually with the size of
12*12). It requires a different CNN architecture
to capture the local graphic features of character

https://en.wikipedia.org/wiki/Chinese_characters
https://en.wikipedia.org/wiki/Chinese_characters


images; (3) no regulatory functions were used in
previous work: unlike the classification task on the
imageNet dataset, which contains tens of millions
of data points, there are only about 10,000 Chinese
characters. Auxiliary training objectives are thus
critical in preventing overfitting and promoting the
model’s ability to generalize.

In this paper, we propose the GLYCE, the
GLYph-vectors for Chinese character representa-
tions. We treat Chinese characters as images and
use CNNs to obtain their representations. We re-
solve the aforementioned issues by using the fol-
lowing techniques:

• We use the ensemble of the historical and
the contemporary scripts (e.g., the bronze-
ware script, the clerical script, the seal script,
the traditional Chinese etc), along with the
scripts of different writing styles (e.g, the cur-
sive script) to enrich pictographic information
from the character images.

• We utilize the Tianzige-CNN (田字格) struc-
tures tailored to logographic character model-
ing for Chinese.

• We use multi-task learning methods by adding
an image-classification loss function to in-
crease the model’s ability to generalize.

Using Glyce, we are able to achieve the state-of-
the-art performances for 13 (almost all) Chinese
NLP tasks, including: (1) character-Level language
modeling, (2) word-Level language modeling, (3)
Chinese word segmentation, (4) name entity recog-
nition, (5) part of speech tagging, (6) dependency
parsing, (7) semantic role labeling, (8) sentence se-
mantic similarity, (9) intention classification, (10)
Chinese-English machine translation, (11) senti-
ment analysis, (12) document classification and
(13) discourse parsing.

The rest of this paper is organized as follows:
we describe the related work in Section 2, model
details in Section 3, experimental details in Section
4, followed by a conclusion in Section 5.

2 Related Work

Chinese characters can be decomposed into smaller
and primitive components, which serve as more ba-
sic units for meanings than words. One line of
work utilizes radical representations to build char-
acter representations (Shi et al., 2015; Li et al.,
2015b; Yin et al., 2016; Sun et al., 2014). Li et al.

(2015b) and Sun et al. (2014) learned radical rep-
resentations based on skip-gram (Mikolov et al.,
2013). Yin et al. (2016) found that radical repre-
sentations improve word-similarity tasks. Nguyen
et al. (2018) used radical embeddings to improve
performances on word pronunciation tasks. An-
other way of representing Chinese characters is to
use the Wubi encoding scheme, which is a shape-
based encoding method for Chinese characters. Tan
et al. (2018) showed that wubi-style encoding can
help machine-translation tasks.

As far as we are concerned, running CNNs on
character logos to obtain Chinese character repre-
sentations was first explored in Dai and Cai (2017).
The logo-based representations were tested on two
tasks: language modeling and word segmentation.
Unfortunately, the results reported in Dai and Cai
(2017) are negative. Tan et al. (2018) incorpora-
teed CNN structures into GloVe (Pennington et al.,
2014) and skipgram (Mikolov et al., 2013) to learn
Chinese character embedings. Significant improve-
ments were reported on word semantic evaluation
tasks such as analogy predictions. Unfortunately,
Tan et al. (2018) did not take further steps to ex-
plore the performances on real-world Chinese NLP
tasks. Another important work is from Liu et al.
(2017), which comprehensively studied visual fea-
tures of three logographic languages: Chinese,
Japanese, and Korean. The models were evaluated
on the task of classifying Wikipedia titles and mod-
els with logographic features. Similarly, Zhang and
LeCun (2017) used logographic features to obtain
characters embeddings for Chinese, Japanese, and
Korean. The logo embeddings were tested on text
classification tasks using online product reviews.
Liu et al. (2017) and Zhang and LeCun (2017) ten-
tatively explored the possibility of using CNNs to
encode logographic features for Chinese in text
classification tasks. As far as we are concerned,
no widely-agreed conclusions have been make on
whether and how treating Chinese characters as
logo images can help semantic modeling,.

CNN based models are widely used in character-
level encoding for alphabetical languages (Zhang
et al., 2015; Kim et al., 2016; Chung et al., 2016;
Luong and Manning, 2016). In Chinese, character
level representations are combined with word-level
representations (Yin et al., 2016; Dong et al., 2016;
Yu et al., 2017). Also in Zhang and LeCun (2017),
Chinese characters are transformed to pingyin, a
romanization system for standard Chinese using
alphabets.



3 Glyce

In this section, we describe the proposed Glyce
model in detail.

3.1 Using Historical Scripts

As discussed in Section 1, pictographic information
is heavily lost in the simplified Chinese script. We
thus propose using scripts from various time peri-
ods in history and also of different writing styles.
We collect the following major historical scripts:4

金文(Bronzeware script),隶书(Clerical script),篆
书(Seal script) and 魏碑(Tablet script), 繁体中
文(traditional Chinese) and简体中文(Simplified
Chinese), along with scripts of different writing
styles: 草书(cursive script) and仿宋. The details
are shown in Table 1, with examples shown in Fig-
ure 2.

Scripts from different historical periods, which
are usually very different in shape, help the model
to integrate pictographic evidence from various
sources; Scripts of different writing styles help
improve the model’s ability to generalize. Both
strategies are akin to widely-used data augmenta-
tion strategies in computer vision.

3.2 The Tianzige-CNN Structure for Glyce

Deep CNNs (He et al., 2016; Szegedy et al., 2016;
Ma et al., 2018b) are widely used in computer
vision tasks like image classification and detec-
tion. Standard CNN structures consist of two ma-
jor components: convolutional layers and pool-
ing layers. For a three-dimensional image input
x ∈ RH×W×C ( H,W,C are input width, height,
channels respectively), a CNN model uses a kernel
to sweep over the input grids. The n × n kernel
maps each n×n×C region from the original image
to a single value. The max-pooling operation usu-
ally follows the convolutional operation, picking
the maximum value from neighboring grids.

Unfortunately, directly using deep CNNs in our
task results in very poor performances because of
(1) relatively smaller size of the character images:
the size of Imagenet images is usually at the scale
of 800*600, while the size of Chinese character
images is significantly smaller, usually at the scale
of 12*12; and (2) the lack of training examples:
classifications on the imageNet dataset utilizes tens

4We did try the oracle-bone script (甲骨文). But the num-
ber of deciphered characters is fewer than 2,000 out of about
5,000 symbols, which means a large proportion of currently
used Chinese characters do not have oracle-bone-script corre-
spondence. We thus give up the oracle-bone script.

of millions of different images. In contrast, there
are only about 10,000 distinct Chinese characters.

To tackle these issues, we propose the Tianzige-
CNN structure, which is tailored to Chinese char-
acter modeling as illustrated in Figures 3. Tianzige
(田字格) is a traditional form of Chinese Callig-
raphy. It is a four-squared format (similar to Chi-
nese character 田) for beginner to learn writing
Chinese characters, shown in Figure 4. The input
image ximage is first passed through a convolution
layer with kernel size 5 and output channels 1024
to capture lower level graphic features. Then a
max-pooling layer of kernel size 4 is applied to the
feature map and reduces the resolution from 8× 8
to the tianzige 2 × 2, . This 2 × 2 tianzige struc-
ture presents how radicals are arranged in Chinese
characters and also the order by which Chinese
characters are written. We find the tianzige struc-
ture of significant importance in extracting char-
acter meanings. Finally, we apply convolutional
operations to map tianzige grids to the final out-
puts. Instead of using conventional convolutional
operations, we use group convolutions (Krizhevsky
et al., 2012; Zhang et al., 2017) as shown in Figure
6. Group convolutional filters are much smaller
than their normal counterparts, and thus are less
prune to overfitting.

It is fairly easy to adjust the model from single
script to multiple scripts, which can be achieved
by simply changing the input from 2D (i.e., dfont ×
dfont) to 3D (i.e., Nscript×dfont×dfont), where dfont
denotes the font size.

3.3 Using Image Classification as an
Auxiliary Objective

To further prevent overfitting, we use the task of
image classification as an auxiliary training objec-
tive. The glyph embedding himage from CNNs will
be forwarded to an image classification objective
to predict its corresponding charID. Suppose the
label of image x is z. The training objective for the
image classification task L(cls) is given as follows:

L(cls) = − log p(z|x)
= − log softmax(W × himage)

(1)

Let L(task) denote the task-specific objective for
the task we need to tackle, e.g., language modeling,
word segmentation, Machine Comprehension, etc.
We linearly combine L(task) and L(cl), making
the final objective training function as follows:

L = (1− λ(t)) L(task) + λ(t)L(cls) (2)



Chinese English Time Period
金文 Bronzeware script Shang dynasty and Zhou dynasty (2000 BC – 300 BC)
隶书 Clerical script Han dynasty (200BC-200AD)
篆书 Seal script Han dynasty and Wei-Jin period (100BC - 420 AD)
魏碑 Tablet script Northern and Southern dynasties 420AD - 588AD

繁体中文 Traditional Chinese 600AD - 1950AD (mainland China).
still currently used in HongKong and Taiwan

简体中文(宋体) Simplified Chinese - Song 1950-now
简体中文(仿宋体) Simplified Chinese - FangSong 1950-now

草书 Cursive script Jin Dynasty to now

Table 1: Scripts and writing styles used in Glyce.

Figure 3: The CNN structure for Glyce.

layer kernel size feature size
input n× 12× 12
conv 5 1024×8×8
relu 1024×8×8

maxpool 4 1024× 2×2
8-group conv 1 256×2× 2
16-group conv 2 1024×1× 1

Table 2: The tianzige-CNN structure in Glyce.

Figure 4: An illustration of the 2 × 2 structure of 田字
格(tianzege), the pattern of which illustrates how radicals
are arranged in Chinese characters and the order by which
Chinese characters are written.

where λ(t) controls the trade-off between the
task-specific objective and the auxiliary image-
classification objective. λ is a function of the num-
ber of epochs t: λ(t) = λ0λ

t
1, where λ0 ∈ [0, 1]

denotes the starting value, λ1 ∈ [0, 1] denotes the
decaying value. This means that the influence from
the image classification objective decreases as the
training proceeds, with the intuitive explanation
being that at the earlier stage of training, we need
more regulations from the image classification task.

Adding image classification as a training objective
mimics the idea of multi-task learning (Collobert
et al., 2011; Chen et al., 2017b; Hashimoto et al.,
2016; FitzGerald et al., 2015).

3.4 Glyce-Char Embeddings
An overview of Glyce-Char embedding is shown in
Figure 5. Images from different scripts of the same
Chinese character are first stacked and then passed
through CNNs to obtain image embedding himage.
himage is directly output to the image classification
model for the training of L(cls). Glyph embed-
dings and charID embeddings are then combined
to obtain Glyce-char embeddings. using concate-
nation, highway networks (Srivastava et al., 2015)
or another fully connected layer.

3.5 Glyce-Word Embeddings
A Chinese word can be further broken down into
characters. Recent work (Yin et al., 2016; Dong
et al., 2016; Yu et al., 2017) combine Chinese char-
acter representations with word representations to
capture more fined-grained semantics, and also to
handle unknown words. The Glyce-word embed-
ding is shown in Figure 5. We first obtain the glyph
embedding for each character using CNNs, which
is then concatenated with charID embedding to ob-
tain Glyce-char embedding. Since Chinese words
can consist of arbitrary number of characters, we
use one layer of max pooling on all constituent
Glyce-char embeddings to make the dimensional-
ity invariant. The outputs from the pooling layer



Figure 5: An overview of the Glyce character embedding and the Glyce word embedding.

Figure 6: The mechanism of group convolution.

d=2048
model ppl # parameter
charID 52.86 51.6M

d=1024
model ppl # para
charID 53.87 17.4M
glyph (1 script, no img cls) 53.70 13.9M
glyph (8 script, no img cls) 172.56 19.2M
glyph (1 script, with img cls) 53.40 18.3M
glyph (8 script, with img cls) 53.10 23.6M
charID+glyph (1 script, no img cls) 51.64 24.6M
charID+glyph (8 script, no img cls) 391.29 30.1M
charID+glyph (1 script, img cls) 51.38 29.0M
charID+glyph (8 script, img cls) 50.67 34.5M

Table 3: Results for the character language modeling
task，along with the number of parameters for each model.

which will further be combined with wordID em-
beddings to obtain Glyce-word embeddings using
concatenation, highway networks (Srivastava et al.,
2015) or another fully connected layer.

4 Experimental Results

In this section, we present results on a variety of
Chinese NLP tasks,

4.1 Task1: Char-Level Language Modeling
The first task is character-level language model-
ing, in which we need to predict the forthcoming
character given previous characters. We evaluate

our model on the Chinese Tree-Bank 6.0 (CTB6).
We followed the commonly adopted protocols, by
which the dataset was dataset into 80%, 10%, 10%
for training, dev and test. The dataset consists
of 4,401 distinct Chinese characters. We use the
LSTM structure, and tuned the number of layers,
dropout rate, batch-size and learning rate using grid
search for all settings.

Table 3 reports perplexity for each model, along
with the number of parameters. charID means that
we only charID embeddings. glyph means char
embeddings are built only using glyph embeddings.
charID + glyph means we use both. 1 script means
only using the simplified Chinese script, while 8
script means using historical scripts and different
writing styles, as discussed in Section 3.2.

We can see that the best glyph model outper-
forms the char model. For the d=1,024 setting,
glyph, 1 script, no img cls outperforms the best
charID setting, even though it has significantly
fewer parameters (since the glyph model does not
need to maintain a D×V look-up char embedding
matrix). This validates that the glyph of Chinese
character encodes significant levels of semantic
information, and that as long as we use a proper
CNN structure, glyph-based models outperform
charID-based models. We observe progressive
performance boost by adding the auxiliary image-
classification objective and historical scripts. In-
terestingly, the image-classification objective is es-
sential for the 8 script model, without which the
value of ppl skyrockets. The explanation is intu-
itive: the image-classification objective pushes the
CNN model to extract shared pictographic features



from different scripts, which is essential in under-
standing character semantics.

Combining charID embeddings with glyph em-
beddings gives additional performance boost, push-
ing the Ppl value down to 50.67 when combined
with 8 historical scripts and the auxiliary image-
classification objective. It is also worth noting that
the best Glyce setting is also significantly better
than the larger charID model with d = 2, 048.

4.2 Task2: Word-Level Language Modeling
We use the same Chinese Tree-Bank 6.0 dataset
for word-level language modeling evaluation.
Train/dev/test sets are the same as the char-level
seting. We use Jieba,5 the most widely-used open-
sourced Chinese word segmentation system to seg-
ment the dataset. The segmented dataset consists
of about 50,000 words and we replaced words that
appear less than 2 times as an UNK token. LSTM
models are run on the word-level representations to
predict following words. Different settings differ
in how word embeddings are computed:

• wordID: Each word is associated with an em-
bedding based on its unique wordID.

• charID: Word embeddings are computed
based on the embeddings of its constituent
characters, and no wordID embeddings are
maintained.

• glyph: Similar to charID, but char embeddings
are computed using glyph information rather
than charID embeddings.

• wordID+charID: Word embeddings are com-
puted based on its corresponding wordID em-
bedding and constituent charID embeddings.

• wordID+glyph: Word embeddings are com-
puted based on its corresponding wordID
embedding and constituent char embeddings
from glyph.

• wordID+charID+glyph: Word embeddings
are computed based on its corresponding wor-
dID embedding, constituent char embeddings
from charIDs, and char embeddings from
glyph.

Vector dimension is fixed to 512 for all models.
Results are shown in Table 4. As can be seen,
the glyph model, which only uses glyph informa-
tion for characters, significantly outperforms the

5https://github.com/fxsjy/jieba

model ppl # parameter
wordID 199.9 28.6M
charID 193.0 18.9M
glyph 181.0 19.2M
wordID+charID 188.4 32.4M
wordID+glyph 175.1 38.5M
wordID+charID+glyph 176.0 36.0M

Table 4: Ppls for word-level language modeling.

wordID model and the CharID model, and amaz-
ingly the wordID+charID model. Interestingly,
wordID+glyph yields the best performance, better
than wordID+charID+glyph. This show that the
glyph information already provides significant (and
enough) semantic information for the word-level
language modeling task.

4.3 Task3: Name Entity Recognition

For the task of Chinese NER, we used the widely-
used OntoNotes, MSRA and resume datasets.
Since most datasets don’t have gold-standard seg-
mentation, the task is normally treated as a char-
level tagging task: outputting an NER tag for each
character. The current SOTA tagging model is
based on Lattice-LSTMs (Zhang and Yang, 2018),
achieving better performances than CRF+LSTM
(Ma and Hovy, 2016). We thus use the publicly
available code for Lattice-LSTMs as a backbone,6

replaced charID embeddings with Glyce-char em-
beddings, and followed the data splits, model setup
and training criteria in Zhang and Yang (2018).
Results are given as follows:

OntoNotes
Model P R F
CRF-LSTM 74.36 69.43 71.81
Lattice-LSTM 76.35 71.56 73.88
Lattice-LSTM+Glyce 82.06 68.74 74.81 (+0.93)

MSRA
Dong et al. (2016) 91.28 90.62 90.95
CRF-LSTM 92.97 90.80 91.87
Lattice-LSTM 93.57 92.79 93.18
Lattice-LSTM+Glyce 93.86 93.92 93.89 (+0.71)

resume
CRF-LSTM 94.53 94.29 94.41
Lattice-LSTM 94.81 94.11 94.46
Lattice-LSTM+Glyce 95.72 95.63 95.67 (+1.21)

As can be seen, the Glyce-char model achieves
new SOTA results for all of the three datasets: it
outperforms currently SOTA results by 0.93, 0.71
and 1.21 respectively on the OntoNotes, MSRA
and resume datasets.

6thttps://github.com/jiesutd/
LatticeLSTM.

https://github.com/fxsjy/jieba
t https:// github.com/jiesutd/LatticeLSTM.
t https:// github.com/jiesutd/LatticeLSTM.


4.4 Task4: Chinese Word Segmentation

The task of Chinese word segmentation (CWS)
is normally treated as a char-level tagging prob-
lem. We used the widely-used CTB6, PKU and
Weibo benchmarks for evaluation. Current SOTA
results are also based on Lattice-LSTMs (Yang
et al., 2018), and we used their publicly available
code as a backbone,7 replaced charID embeddings
with Glyce-char embeddings, and exactly followed
the data splits, model setup and training criteria.8

Results are shown as follows:
Models CTB6 PKU Weibo

Zhou et al. (2017) 96.2 96.0 -
Yang et al. (2017) 96.2 96.3 95.5

Lattice+Word 96.3 95.9 95.1
Lattice+Subword 96.1 95.8 95.3

Lattice+Glyce-Char 96.6 96.3 96.0
(+0.3) (+0.0) (+0.5)

As can be seen, the Glyce-char model sets new
SOTA performances on the CTB6 and Weibo
datasets, and matches the SOTA performance on
the PKU dataset. From the statistics above, it is
worth noting that Glyce-char is the only model that
is able to achieve/match SOTA results across all
datasets.

4.5 Task5: Part of Speech Tagging

Proposed by Ng and Low (2004), current POS mod-
els for Chinese predict the segmentation boundaries
and POS tags simultaneously at the character level.
Current SOTA models are based on Bidirectional
RNN-CRF at the char-level (Shao et al., 2017). We
thus use their publicly available code9 as a back-
bone, replaced the char embeddings with Glyce-
char embeddings, and followed data splits, model
setup and training criteria in Shao et al. (2017). We
use the CTB5, CTB6 and UD1 (Universal Depen-

7https://github.com/jiesutd/
SubwordEncoding-CWS

8Using bi-directional stacking LSTMs – feeding outputs
from forward LSTMs to backward LSTMs – Ma et al. (2018a)
reported higher performances in CWS tasks than Lattice-
LSTMs, but didn’t open-source pertinent code to the moment
when this paper is published. Based on email interactions, au-
thors of the paper, suggested (1) obtaining pre-trained vectors
using wang2vec with the following parameters: -window 5
-negative 10 -sample 1e-4 -size 64; and (2) using a outside
symbol to denote the bigram at the last character and UNK to
denote unseens biagrams, the embedding of which are learned
during training. We followed these suggestions and compre-
hensively tuned the parameters for neural net models. But the
best performance we are able to achieve is still around 2-3
percent off the reported results. We conjecture that this might
be due to the corpus used to pre-train the embeddings, and
this corpus is not publicly released. We thus do not compare
our results with Ma et al. (2018a), and consider results from
Yang et al. (2018) as currently SOTA.

9https://github.com/yanshao9798/tagger

dencies) benchmarks to test our models. Results
for different datasets are shown as follows:.

Models CTB5 CTB6 UD1
Ensemble

Shao et al. (2017)(ensemble) 94.38 - 89.75
Single

Shao et al. (2017)(single) 94.07 90.81 89.41

Lattice+Glyce-Char 95.61 91.34 90.77
(+1.54) (+0.53) (+1.36)

As can be seen, the single Glyce-word model out-
put previous SOTA result from single model by
1.54 and 1.36 on the CTB5 and UD1 datasets. Ad-
ditionally, the single Glyce-word model even out-
performs the ensemble model in Shao et al. (2017),
achieving new SOTA results fo 95.61 and 90.77 on
the two datasets.

4.6 Task6: Dependency Parsing
For dependency parsing (Chen and Manning,
2014; Dyer et al., 2015), we used the widely-used
Chinese Penn Treebank 5.1 dataset for evaluation.
Our implementation uses the previous state-of-
the-art Deep Biaffine model (Dozat and Manning,
2016) as a backbone. We replaced the word
vectors from the biaffine model with Glyce-word
embeddings, and exactly followed its model
structure and training/dev/test split criteria. Results
for unlabeled attachment score (UAS) and labeled
attachment score (LAS) are given as follows:

Model UAS LAS
Ballesteros et al. (2016) 87.7 86.2
Kiperwasser and Goldberg (2016) 87.6 86.1
Cheng et al. (2016) 88.1 85.7
Biaffine 89.3 88.2

Biaffine+Glyce-Word 90.2 89.0
(+0.9) (+0.8)

Results for previous models are copied from Dozat
and Manning (2016); Ballesteros et al. (2016);
Cheng et al. (2016). Glyce-word pushes SOTA
performances up by +0.9 and +0.8.

4.7 Task7: Semantic Role Labeling
For the task of semantic role labeling (SRL) (Roth
and Lapata, 2016; Marcheggiani and Titov, 2017;
He et al., 2018), we used the CoNLL-2009 shared-
task. We used the current SOTA model, the k-
order pruning algorithm (He et al., 2018) as a back-
bone,10 and replaced word embeddings with Glyce-
word embeddings. We exactly followed the data
splits, model setup and training criteria. Results
are given as follows:

10Code opensourced at https://github.com/
bcmi220/srl_syn_pruning
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Model P R F
Roth and Lapata (2016) 76.9 73.8 75.3

Marcheggiani and Titov (2017) 84.6 80.4 82.5
k-order pruning (He et al., 2018) 84.2 81.5 82.8

k-order pruning+Glyce-word 85.4 82.1 83.7
(+0.8) (+0.6) (+0.9)

The results are copied from Roth and Lapata
(2016); Marcheggiani and Titov (2017); He et al.
(2018). The proposed Glyce model outperforms
the previous SOTA performance by 0.9 F1 score,
achieving a new SOTA score of 83.7.

4.8 Task8: Sentence Semantic Similarity
For the task of sentence semantic similarity, we
used the BQ corpus (Chen et al., 2018). The BQ
corpus contains 120,000 Chinese sentence pairs,
and each pair is associated with a label indicating
whether the two sentences are of equivalent seman-
tic meanings. One can think the BQ corpus as a
Chinese version of SNIL (Bowman et al., 2015),
the construction of which is to capture whether one
sentence paraphrases the other. The dataset is de-
liberately constructed in a way that for some pairs,
its constituent two sentences have most of words
overlapped but their meanings are completely dif-
ferent, while for other pairs, sentences share very
few word overlaps but with equivalent meanings.

The task is transformed to a binary classifi-
cation problem. The current SOTA model is
based on the bilateral multi-perspective matching
model (BiMPM) (Wang et al., 2017) which specif-
ically tackles the matching problem between sen-
tences. BiMPM significantly outperforms CNNs
and LSTMs on sentence-matching tasks. Again,
we exactly followed the setup from Chen et al.
(2018), with the only difference being replacing
the input embedding with Glyce embedding. The
original SOTA result is based on characters rather
than words. We thus use Glyce-char embeddings.11

Results for different models are given as follows:
Models P R F A

BiLSTM 75.04 70.46 72.68 73.51
DIIN 81.58 81.14 81.36 81.41

BiMPM 82.28 81.18 81.73 81.85

BiMPM+Glyce 81.93 85.54 83.70 83.34
- - (+1.97) (+1.49)

DIIN results are copied from Gong et al. (2017),
BiLSTM results and BiMPM (SOTA) are copied
from Chen et al. (2018). As can be seen, the pro-
posed Glyce model outperforms the previous SOTA
performance by +1.97, achieve a new SOTA score
of 83.70 on the BQ corpus.

11Char embeddings actually outperform word embeddings
on the BQ task.

4.9 Task9: Intention Identification
The Large-scale Chinese Question Matching Cor-
pus (LCQMC) (Liu et al., 2018) aims at identifying
whether two sentences have the same intention.
This task similar to but not exactly the same as
the paraphrase task in BQ: two sentences can have
different meanings but share the same intent. For
example, meanings for ”My phone is lost” and ”I
need a new phone” are different, but their inten-
tions are the same: buying a new phone. Each
pair of sentences in the dataset is associated with a
binary label indicating whether the two sentences
share the same intention, and the task can be for-
malized as predicting this binary label. The set-
ting of LCQMC is similar to that of BQ, and the
model needs to capture the matching between two
sequences. Again, current state-of-the-art results
are from the bilateral multi-perspective matching
model (BiMPM). We follow the setup in Liu et al.
(2018) and train a BiMPM model using Glyce-char
embeddings. Performances are given as follows:

Models P R F A
BiLSTM 70.6 89.3 78.9 76.1
BiMPM 77.6 93.9 85.0 83.4

BiMPM+Glyce 80.4 93.4 86.4 85.3
- - (+1.4) (+1.9)

The BiLSTM results and the SOTA results for
BiMPM are copied from Liu et al. (2018). As can
be seen, the proposed Glyce model outperforms the
previous SOTA performance by 1.4 for F1 and 1.9
for accuracy.

4.10 Task10: Chinese-English Machine
Translation

Since Glyce helps sentence encoding, we believe
that it will improve the encoding process of MT,
which will consequently improve Ch-En translation
performances. We use the standard Ch-En setting,
and exactly followed the common setup adopted
in Ma et al. (2018c); Chen et al. (2017a); Li et al.
(2017); Zhang et al. (2018). The training set con-
sists of 1.25M sentence pairs extracted from LDC
corpora.12 Dev set is from NIST 2002 and models
are evaluated on NIST 2003, 2004, 2005, 2006 and
2008. The current state-of-the-art setting is from
Ma et al. (2018c), which uses both the sentences
(seq2seq) and the bag-of-words as targets in the
training stage. We used their publicly available
code as a backbone,13 exactly followed its training

12LDC2002E18, LDC2003E07, LDC2003E14, Hansards
portion of LDC2004T07, LDC2004T08 and LDC2005T06

13https://github.com/lancopku/
bag-of-words
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criteria and replaced word embeddings at the en-
coding time with Glyce-word vectors. We report
BLEU scores (Papineni et al., 2002) for different
models as follows:

TestSet Seq2Seq Seq2Seq Glyce+Seq2Seq
+Attn +Attn+BOW +Attn+BOW

MT-02 34.71 39.77 40.56 (+0.79)
MT-03 33.15 38.91 39.93 (+1.02)
MT-04 35.26 40.02 41.54 (+1.52)
MT-05 32.36 36.82 38.01 (+1.19)
MT-06 32.45 35.93 37.45 (+1.52)
MT-08 23.96 27.61 29.07 (+1.46)

Average 31.96 36.51 37.76 (+1.25)

The seq2seq+attention results and the current
SOTA results (Seq2Seq+BOW) are copied from
Ma et al. (2018c). Glyce achieves a new SOTA
record on the Ch-En translation benchmark, achiev-
ing a BLEU score of 37.76.

4.11 Task11: Sentiment Analysis

The task of sentiment analysis (Socher et al., 2013;
Pang et al., 2002) is usually formalized as a binary
or multi-class classification problem, assigning sen-
timent labels to text inputs. Currently widely used
Chinese sentiment benchmarks include (1) Dian-
ping: Chinese restaurant reviews crawled from the
online review website dazhong dianping (similar to
Yelp). Training set consists of 2,000,000 reviews
and test set consists of 500,000 reviews. The data
is processed in a way that 4 and 5 star reviews be-
long to the positive class while 1-3 star reviews
belong to the negative class, making the task a
binary-classification problem; (2) JD Full: shop-
ping reviews in Chinese crawled from JD.com for
predicting full five stars, making the task a five-
class classification problem. Training set consists
of 3M reviews and test set consists of 250,000
reviews; (3) JD binary: shopping reviews from
JD.com with 4-and-5 star reviews belonging to the
positive class and 1-and-2 to the negative class. 3-
star reviews are ignored. Training set consists of
4M reviews and test set consists of 360,000 reviews.
The datasets were first provided in Zhang and Le-
Cun (2017). For our implementation, we trained a
simple Bi-directional LSTM based on Glyce-char
embeddings. We report the accuracy for the Glyce-
char model with different baselines in the table
below:

Model Dianping JD Full JD Binary
char N-gram 76.41 51.82 91.08
word N-gram 76.97 51.70 91.18
char-EmbedNet 76.40 51.71 90.59
word-EmbedNet 75.45 49.95 89.63
char-fastText 77.66 52.01 91.28
word-fastText 77.38 51.89 90.89

Glyce-Char 78.46 54.24 91.76
(+0.80) (+2.23) (+0.58)

The results for char N-gram (regression on char N-
gram features), word N-gram (regression on word
N-gram features), char-EmbedNet (CNN on chars),
word-EmbedNet (CNN on words), char-fasttext
(fasttext (Joulin et al., 2016) on chars) and word-
fastText (fasttext on words) are directly copied
from Zhang and LeCun (2017), and we picked
the model with best reported performances. Using
Glyce-char models, we are able to set new SOTA re-
sults on all of the three sentiment analysis datasets.

4.12 Task12: Document Classification

The setup for document classification tasks is simi-
lar to sentiment analysis, in which a label indicating
document genre is to be assigned to each input doc-
ument. Prevalent datasets include (1) the Fudan
corpus (Li, 2011). Following Xu et al. (2016); Cao
et al. (2018), the dataset consists of 1218 environ-
mental, 1022 agricultural, 1601 economical, 1025
political and 1254 sport documents; 70% of the
total data is used for training and the rest for test-
ing. (2) Ifeng: First paragraphs of Chinese news
articles from 2006-2016. The dataset consists of
5 news categories. Training set is made up with
800,000 documents and test set contains 50,000
documents; (3) ChinaNews: Chinese news articles
split into 7 news categories. Training set consists
of 1.4M documents and test set consists of 50,000
documents. For our implementation, we trained a
simple Bi-directional LSTM based on Glyce-char
embeddings. We report accuracy for different mod-
els in the table below:

Model Fudan Ifeng ChinaNews
char N-gram - 78.48 86.63
word N-gram - 81.70 89.24
char-EmbedNet - 82.99 89.45
word-EmbedNet - 79.18 85.25
char-fasttext - 83.69 90.90
word-fasttext - 83.35 90.76
cw2vec 95.3 - -

Glyce-Char 96.3 85.76 91.88
(+1.0) (+2.07) (+0.98)

The results for char N-gram, word N-gram, char-
EmbedNet, word-EmbedNet, char-fasttext and
word-fasttext are directly copied from Zhang and
LeCun (2017), and we picked the model with best



performances. Results for cw2vec are copied from
Cao et al. (2018). Again, the proposed Glyce-char
model achieves the SOTA results across all the
three datasets.

4.13 Task13: Discourse Parsing
Discourse parsing (Ji and Eisenstein, 2014; Li et al.,
2014a; Jiang et al., 2018; Chuan-An et al., 2018)
aims at identifying how discourse units are con-
nected with each other to form the discourse hierar-
chy. It can be thought similar to syntactic parsing
but basic units are text segments (referred to as ele-
mentary discourse unit, EDU for short) rather than
words. The most commonly used benchmarkjis
the Chinese Discourse Treebank (CDTB) dataset,
which was constructed by Li et al. (2014b). Based
on golden EDUs, the task consists of two stages: (1)
discourse tree construction: hierarchically merging
discourse units (EDUs) in the bottom-up fashion.
This can further be transformed to a binary clas-
sification problem of deciding whether two neigh-
boring EDUs should be merged; and (2) discourse
relation labeling: identifying the relation between
two EDUs that were joined in the tree construction
process, which is formed as a multi-class classifi-
cation problem. At the test time, a discourse tree is
constructed using the CKY algorithm.

We followed the previous SOTA RvNN model
(Chuan-An et al., 2018), which first maps each
EDU to a vector representation using LSTMs. Rep-
resentations for non-leaf nodes during tree con-
struction process are constructed using treeLSTMs
(Li et al., 2015a; Tai et al., 2015). We replaced the
charID embeddings with Glyce-char embeddings,
and followed the protocols defined in Chuan-An
et al. (2018). For evaluation, we report results for
parse tree construction (Structure), parse tree con-
struction with sense labeling (+Sense), parse tree
construction with center labeling (+Center), and
parse tree construction with both sense and center
labeling (Overall).

Result RvNN RvNN+Glyce
Structure 64.6 67.9 (+3.3)
+Sense 42.7 45.1 (+2.4)
+Center 38.5 41.2 (+2.7)
Overall 35.0 37.8 (+2.8)

The SOTA results are copied from Chuan-An et al.
(2018), and using Glyce we are able to achieve new
SOTA results for all of the four evaluation values.

5 Conclusion

In this paper, we propose the GLYCE: the Glyph-
vectors for Chinese Character Representations.

Glyce treats Chinese characters as images and uses
Tianzige-CNN to extract character semantics and
build representations. For better semantic model-
ing, we 1) use historical Chinese scripts; 2) design a
Tianzige-CNN structure which tailored to Chinese
character images; and 3) use image classification
as an auxiliary task objective. With Glyce, we are
able to set new SOTA results for almost all Chinese
NLP tasks.

Logographic languages like Chinese or Japanese
are very different from alphabetic languages like
English or French. Unfortunately, most previous
efforts for processing Chinese are borrowed
from methods experimented on English. Glyce
suggests some avenues for fruitful research in NLP
tasks with logographic languages such as Chinese.
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